OscProb
zheevq3.cxx File Reference
#include <stdio.h>
#include <cmath>
#include <complex>
#include "zhetrd3.h"
#include "zheevq3.h"

Go to the source code of this file.

Macros

#define SQR(x)   ((x)*(x))
 
#define SQR_ABS(x)   (SQR(real(x)) + SQR(imag(x)))
 

Functions

int zheevq3 (std::complex< double > A[3][3], std::complex< double > Q[3][3], double w[3])
 

Macro Definition Documentation

◆ SQR

#define SQR (   x)    ((x)*(x))

Definition at line 26 of file zheevq3.cxx.

◆ SQR_ABS

#define SQR_ABS (   x)    (SQR(real(x)) + SQR(imag(x)))

Definition at line 27 of file zheevq3.cxx.

Function Documentation

◆ zheevq3()

int zheevq3 ( std::complex< double >  A[3][3],
std::complex< double >  Q[3][3],
double  w[3] 
)

Definition at line 31 of file zheevq3.cxx.

51{
52 const int n = 3;
53 double e[3]; // The third element is used only as temporary workspace
54 double g, r, p, f, b, s, c; // Intermediate storage
55 std::complex<double> t;
56 int nIter;
57 int m;
58
59 // Transform A to real tridiagonal form by the Householder method
60 zhetrd3(A, Q, w, e);
61
62 // Calculate eigensystem of the remaining real symmetric tridiagonal matrix
63 // with the QL method
64 //
65 // Loop over all off-diagonal elements
66 for (int l=0; l < n-1; l++)
67 {
68 nIter = 0;
69 while (1)
70 {
71 // Check for convergence and exit iteration loop if off-diagonal
72 // element e(l) is zero
73 for (m=l; m <= n-2; m++)
74 {
75 g = fabs(w[m])+fabs(w[m+1]);
76 if (fabs(e[m]) + g == g)
77 break;
78 }
79 if (m == l)
80 break;
81
82 if (nIter++ >= 30)
83 return -1;
84
85 // Calculate g = d_m - k
86 g = (w[l+1] - w[l]) / (e[l] + e[l]);
87 r = sqrt(SQR(g) + 1.0);
88 if (g > 0)
89 g = w[m] - w[l] + e[l]/(g + r);
90 else
91 g = w[m] - w[l] + e[l]/(g - r);
92
93 s = c = 1.0;
94 p = 0.0;
95 for (int i=m-1; i >= l; i--)
96 {
97 f = s * e[i];
98 b = c * e[i];
99 if (fabs(f) > fabs(g))
100 {
101 c = g / f;
102 r = sqrt(SQR(c) + 1.0);
103 e[i+1] = f * r;
104 c *= (s = 1.0/r);
105 }
106 else
107 {
108 s = f / g;
109 r = sqrt(SQR(s) + 1.0);
110 e[i+1] = g * r;
111 s *= (c = 1.0/r);
112 }
113
114 g = w[i+1] - p;
115 r = (w[i] - g)*s + 2.0*c*b;
116 p = s * r;
117 w[i+1] = g + p;
118 g = c*r - b;
119
120 // Form eigenvectors
121#ifndef EVALS_ONLY
122 for (int k=0; k < n; k++)
123 {
124 t = Q[k][i+1];
125 Q[k][i+1] = s*Q[k][i] + c*t;
126 Q[k][i] = c*Q[k][i] - s*t;
127 }
128#endif
129 }
130 w[l] -= p;
131 e[l] = g;
132 e[m] = 0.0;
133 }
134 }
135
136 return 0;
137}
#define SQR(x)
Definition: zheevq3.cxx:26
void zhetrd3(std::complex< double > A[3][3], std::complex< double > Q[3][3], double d[3], double e[2])
Definition: zhetrd3.cxx:30

References SQR, and zhetrd3().

Referenced by zheevh3().