OscProb
OscProb::PMNS_Avg Class Reference

Implementation of oscillations of neutrinos in matter in a three-neutrino framework with a first order Taylor expansion. More...

#include <PMNS_Avg.h>

Inheritance diagram for OscProb::PMNS_Avg:
OscProb::PMNS_Fast OscProb::PMNS_Base

Public Member Functions

 PMNS_Avg ()
 Constructor. More...
 
virtual ~PMNS_Avg ()
 Destructor. More...
 
virtual void SetPremModel (OscProb::PremModel &prem)
 
virtual double AvgProb (int flvi, int flvf, double E, double dE)
 
virtual double AvgProbLoE (int flvi, int flvf, double LoE, double dLoE)
 
virtual double AvgProb (int flvi, int flvf, double E, double cosT, double dcosT)
 
virtual double AvgProb (int flvi, int flvf, double E, double dE, double cosT, double dcosT)
 
virtual double AvgProbLoE (int flvi, int flvf, double LoE, double dLoE, double cosT, double dcosT)
 
virtual double ExtrapolationProb (int flvi, int flvf, double E, double dE)
 
virtual double ExtrapolationProbLoE (int flvi, int flvf, double LoE, double dLoE)
 
virtual double ExtrapolationProbCosT (int flvi, int flvf, double cosT, double dcosT)
 
virtual void SetMix (double th12, double th23, double th13, double deltacp)
 Set the all mixing parameters at once. More...
 
virtual void SetDeltaMsqrs (double dm21, double dm32)
 Set both mass-splittings at once. More...
 
virtual double Prob (vectorC nu_in, int flvf)
 Compute the probability of nu_in going to flvf. More...
 
virtual double Prob (vectorC nu_in, int flvf, double E)
 
virtual double Prob (vectorC nu_in, int flvf, double E, double L)
 
virtual double Prob (int flvi, int flvf)
 Compute the probability of flvi going to flvf. More...
 
virtual double Prob (int flvi, int flvf, double E)
 
virtual double Prob (int flvi, int flvf, double E, double L)
 
virtual vectorD ProbVector (vectorC nu_in)
 
virtual vectorD ProbVector (vectorC nu_in, double E)
 flavours for energy E More...
 
virtual vectorD ProbVector (vectorC nu_in, double E, double L)
 
virtual vectorD ProbVector (int flvi)
 
virtual vectorD ProbVector (int flvi, double E)
 
virtual vectorD ProbVector (int flvi, double E, double L)
 
virtual matrixD ProbMatrix (int nflvi, int nflvf)
 Compute the probability matrix. More...
 
virtual matrixD ProbMatrix (int nflvi, int nflvf, double E)
 Compute the probability matrix for energy E. More...
 
virtual matrixD ProbMatrix (int nflvi, int nflvf, double E, double L)
 
virtual double AvgProb (vectorC nu_in, int flvf, double E, double dE=0)
 Compute the average probability over a bin of energy. More...
 
virtual double AvgProbLoE (vectorC nu_in, int flvf, double LoE, double dLoE=0)
 Compute the average probability over a bin of L/E. More...
 
virtual vectorD AvgProbVector (vectorC nu_in, double E, double dE=0)
 
virtual vectorD AvgProbVector (int flvi, double E, double dE=0)
 
virtual vectorD AvgProbVectorLoE (vectorC nu_in, double LoE, double dLoE=0)
 Compute the average probability vector over a bin of L/E. More...
 
virtual vectorD AvgProbVectorLoE (int flvi, double LoE, double dLoE=0)
 Compute the average probability vector over a bin of L/E. More...
 
virtual matrixD AvgProbMatrix (int nflvi, int nflvf, double E, double dE=0)
 
virtual matrixD AvgProbMatrixLoE (int nflvi, int nflvf, double LoE, double dLoE=0)
 Compute the average probability matrix over a bin of L/E. More...
 
virtual vectorC GetMassEigenstate (int mi)
 Get a neutrino mass eigenstate. More...
 
virtual void SetAngle (int i, int j, double th)
 Set the mixing angle theta_ij. More...
 
virtual void SetDelta (int i, int j, double delta)
 Set the CP phase delta_ij. More...
 
virtual void SetDm (int j, double dm)
 Set the mass-splitting dm_j1 in eV^2. More...
 
virtual double GetAngle (int i, int j)
 Get the mixing angle theta_ij. More...
 
virtual double GetDelta (int i, int j)
 Get the CP phase delta_ij. More...
 
virtual double GetDm (int j)
 Get the mass-splitting dm_j1 in eV^2. More...
 
virtual double GetDmEff (int j)
 Get the effective mass-splitting dm_j1 in eV^2. More...
 
virtual void SetStdPars ()
 Set PDG 3-flavor parameters. More...
 
virtual void SetEnergy (double E)
 Set the neutrino energy in GeV. More...
 
virtual void SetIsNuBar (bool isNuBar)
 Set the anti-neutrino flag. More...
 
virtual double GetEnergy ()
 Get the neutrino energy in GeV. More...
 
virtual bool GetIsNuBar ()
 Get the anti-neutrino flag. More...
 
virtual void SetPath (NuPath p)
 Set a single path. More...
 
virtual void SetPath (double length, double density, double zoa=0.5, int layer=0)
 Set a single path. More...
 
virtual void SetPath (std::vector< NuPath > paths)
 Set a path sequence. More...
 
virtual void AddPath (NuPath p)
 Add a path to the sequence. More...
 
virtual void AddPath (double length, double density, double zoa=0.5, int layer=0)
 Add a path to the sequence. More...
 
virtual void ClearPath ()
 Clear the path vector. More...
 
virtual void SetLength (double L)
 Set a single path lentgh in km. More...
 
virtual void SetLength (vectorD L)
 Set multiple path lengths. More...
 
virtual void SetDensity (double rho)
 Set single path density in g/cm^3. More...
 
virtual void SetDensity (vectorD rho)
 Set multiple path densities. More...
 
virtual void SetZoA (double zoa)
 Set Z/A value for single path. More...
 
virtual void SetZoA (vectorD zoa)
 Set multiple path Z/A values. More...
 
virtual void SetLayers (std::vector< int > lay)
 Set multiple path layer indices. More...
 
virtual void SetStdPath ()
 Set standard neutrino path. More...
 
virtual std::vector< NuPathGetPath ()
 Get the neutrino path sequence. More...
 
virtual void SetUseCache (bool u=true)
 Set caching on/off. More...
 
virtual void ClearCache ()
 Clear the cache. More...
 
virtual void SetMaxCache (int mc=1e6)
 Set max cache size. More...
 
virtual void SetAvgProbPrec (double prec)
 Set the AvgProb precision. More...
 

Protected Member Functions

virtual void InitializeTaylorsVectors ()
 
virtual void SetwidthBin (double dE, double dcosT)
 
virtual void SetCosT (double cosT)
 Set neutrino angle. More...
 
virtual vectorD GetSamplePoints (double LoE, double dLoE)
 
virtual vectorD GetSamplePoints (double E, double cosT, double dcosT)
 
virtual matrixC GetSamplePoints (double InvE, double dInvE, double cosT, double dcosT)
 
virtual void BuildKE (double L)
 build K matrix for the inverse of energy in mass basis More...
 
virtual void BuildKcosT (double L)
 build K matrix for angle in flavor basis More...
 
virtual double LnDerivative ()
 
virtual void rotateS ()
 Rotate the S matrix. More...
 
virtual void rotateK ()
 Rotate one K matrix. More...
 
virtual void MultiplicationRuleS ()
 Product between two S matrices. More...
 
virtual void MultiplicationRuleK (complexD K[3][3])
 Product between two K matrices. More...
 
virtual void SolveK (complexD K[3][3], vectorD &lambda, matrixC &V)
 Solve the K matrix. More...
 
virtual void PropagatePathTaylor (NuPath p)
 Propagate neutrino through a single path. More...
 
virtual void PropagateTaylor ()
 Propagate neutrino through full path. More...
 
virtual double AvgFormula (int flvi, int flvf, double dbin, vectorD flambda, matrixC fV)
 
virtual double AvgAlgo (int flvi, int flvf, double LoE, double dLoE, double L)
 
virtual double AvgAlgoCosT (int flvi, int flvf, double E, double cosT, double dcosT)
 
virtual double AvgAlgo (int flvi, int flvf, double InvE, double dInvE, double cosT, double dcosT)
 
virtual double AlgorithmDensityMatrix (int flvi, int flvf)
 
virtual void RotateDensityM (bool to_basis, matrixC V)
 Apply rotation to the density matrix. More...
 
virtual void HadamardProduct (vectorD lambda, double dbin)
 to the density matrix More...
 
virtual double AvgFormulaExtrapolation (int flvi, int flvf, double dbin, vectorD flambda, matrixC fV)
 Formula for the extrapolation of probability. More...
 
virtual void UpdateHam ()
 Build the full Hamiltonian. More...
 
virtual void SolveHam ()
 Solve the full Hamiltonian for eigenvectors and eigenvalues. More...
 
virtual void SolveHamMatter ()
 Solve the full Hamiltonian in matter. More...
 
virtual void SetVacuumEigensystem ()
 Set the eigensystem to the analytic solution of the vacuum Hamiltonian. More...
 
virtual void InitializeVectors ()
 
virtual bool TryCache ()
 Try to find a cached eigensystem. More...
 
virtual void FillCache ()
 Cache the current eigensystem. More...
 
virtual void SetCurPath (NuPath p)
 Set the path currently in use by the class. More...
 
virtual void SetAtt (double att, int idx)
 Set one of the path attributes. More...
 
virtual void SetAtt (vectorD att, int idx)
 Set all values of a path attribute. More...
 
virtual void RotateH (int i, int j, matrixC &Ham)
 Rotate the Hamiltonian by theta_ij and delta_ij. More...
 
virtual void RotateState (int i, int j)
 Rotate the neutrino state by theta_ij and delta_ij. More...
 
virtual void BuildHms ()
 Build the matrix of masses squared. More...
 
virtual void ResetToFlavour (int flv)
 Reset neutrino state to pure flavour flv. More...
 
virtual void SetPureState (vectorC nu_in)
 Set the initial state from a pure state. More...
 
virtual void PropagatePath (NuPath p)
 Propagate neutrino through a single path. More...
 
virtual void Propagate ()
 Propagate neutrino through full path. More...
 
virtual double P (int flv)
 Return the probability of final state in flavour flv. More...
 
virtual vectorD GetProbVector ()
 
virtual std::vector< int > GetSortedIndices (const vectorD x)
 Get indices that sort a vector. More...
 
virtual vectorD ConvertEtoLoE (double E, double dE)
 

Protected Attributes

matrixC fevolutionMatrixS
 
matrixC fSflavor
 S matrix for one layer. More...
 
matrixC fKmass
 K matrix in mass basis for one layer. More...
 
matrixC fKflavor
 K matrix in flavor basis for one layer. More...
 
double fdInvE
 Bin's width for the inverse of energy in GeV-1. More...
 
complexD fKInvE [3][3]
 
vectorD flambdaInvE
 Eigenvectors of K_invE. More...
 
matrixC fVInvE
 Eigenvalues of K_invE. More...
 
double fcosT
 Cosine of neutrino angle. More...
 
double fdcosT
 Bin's width for angle. More...
 
complexD fKcosT [3][3]
 K matrix for neutrino angle for the entire path. More...
 
vectorD flambdaCosT
 Eigenvectors of K_cosTheta. More...
 
matrixC fVcosT
 Eigenvalues of K_cosTheta. More...
 
matrixC fdensityMatrix
 The neutrino density matrix state. More...
 
int fLayer
 
int fdl
 
double fDetRadius
 
double fminRsq
 
OscProb::PremModel fPrem
 
complexD fHam [3][3]
 The full hamiltonian. More...
 
int fNumNus
 Number of neutrino flavours. More...
 
vectorD fDm
 m^2_i - m^2_1 in vacuum More...
 
matrixD fTheta
 theta[i][j] mixing angle More...
 
matrixD fDelta
 delta[i][j] CP violating phase More...
 
vectorC fNuState
 The neutrino current state. More...
 
matrixC fHms
 matrix H*2E in eV^2 More...
 
vectorC fPhases
 Buffer for oscillation phases. More...
 
vectorC fBuffer
 Buffer for neutrino state tranformations. More...
 
vectorD fEval
 Eigenvalues of the Hamiltonian. More...
 
matrixC fEvec
 Eigenvectors of the Hamiltonian. More...
 
double fEnergy
 Neutrino energy. More...
 
bool fIsNuBar
 Anti-neutrino flag. More...
 
std::vector< NuPathfNuPaths
 Vector of neutrino paths. More...
 
NuPath fPath
 Current neutrino path. More...
 
bool fBuiltHms
 Tag to avoid rebuilding Hms. More...
 
bool fGotES
 Tag to avoid recalculating eigensystem. More...
 
bool fUseCache
 Flag for whether to use caching. More...
 
double fCachePrec
 Precision of cache matching. More...
 
int fMaxCache
 Maximum cache size. More...
 
double fAvgProbPrec
 AvgProb precision. More...
 
std::unordered_set< EigenPointfMixCache
 Caching set of eigensystems. More...
 
EigenPoint fProbe
 EigenpPoint to try. More...
 

Static Protected Attributes

static const complexD zero
 zero in complex More...
 
static const complexD one
 one in complex More...
 
static const double kKm2eV = 1.0 / 1.973269788e-10
 km to eV^-1 More...
 
static const double kK2
 mol/GeV^2/cm^3 to eV More...
 
static const double kGeV2eV = 1.0e+09
 GeV to eV. More...
 
static const double kNA = 6.022140857e23
 Avogadro constant. More...
 
static const double kGf = 1.1663787e-05
 G_F in units of GeV^-2. More...
 

Detailed Description

This class expands the PMNS_Fast class including the use of a first order Taylor expansion to calculate the average on bins faster.

The model assumes a first order expansion over neutrino energy and angle for both dynamical variables at the same time or for only one.

This is the first version of this class. A second version will be release with a better implementation with the other classes.

Reference: https://doi.org/10.48550/arXiv.2308.00037

See also
PMNS_Fast
Author
jcoelho@apc.in2p3.fr

Definition at line 31 of file PMNS_Avg.h.

Constructor & Destructor Documentation

◆ PMNS_Avg()

PMNS_Avg::PMNS_Avg ( )

Constructor.

See also
PMNS_Base::PMNS_Base

This class is restricted to 3 neutrino flavours.

Definition at line 26 of file PMNS_Avg.cxx.

26 : PMNS_Fast()
27{
28 fPrem.LoadModel("");
29
31
32 SetwidthBin(0, 0);
33
34 SetAvgProbPrec(1e-4);
35}
virtual void SetwidthBin(double dE, double dcosT)
Definition: PMNS_Avg.cxx:106
virtual void InitializeTaylorsVectors()
Definition: PMNS_Avg.cxx:48
OscProb::PremModel fPrem
Definition: PMNS_Avg.h:204
virtual void SetAvgProbPrec(double prec)
Set the AvgProb precision.
Definition: PMNS_Base.cxx:1962
PMNS_Fast()
Constructor.
Definition: PMNS_Fast.cxx:21
virtual void LoadModel(std::string filename)
Load an earth model from a file.
Definition: PremModel.cxx:181

References fPrem, InitializeTaylorsVectors(), OscProb::PremModel::LoadModel(), OscProb::PMNS_Base::SetAvgProbPrec(), and SetwidthBin().

◆ ~PMNS_Avg()

PMNS_Avg::~PMNS_Avg ( )
virtual

Nothing to clean.

Definition at line 41 of file PMNS_Avg.cxx.

41{}

Member Function Documentation

◆ AddPath() [1/2]

void PMNS_Base::AddPath ( double  length,
double  density,
double  zoa = 0.5,
int  layer = 0 
)
virtualinherited

Add a path to the sequence defining attributes directly.

Parameters
length- The length of the path segment in km
density- The density of the path segment in g/cm^3
zoa- The effective Z/A of the path segment
layer- An index to identify the layer type (e.g. earth inner core)

Definition at line 317 of file PMNS_Base.cxx.

318{
319 AddPath(NuPath(length, density, zoa, layer));
320}
virtual void AddPath(NuPath p)
Add a path to the sequence.
Definition: PMNS_Base.cxx:307
A struct representing a neutrino path segment.
Definition: NuPath.h:34

References OscProb::PMNS_Base::AddPath().

◆ AddPath() [2/2]

void PMNS_Base::AddPath ( NuPath  p)
virtualinherited

Add a path to the sequence.

Parameters
p- A neutrino path segment

Definition at line 307 of file PMNS_Base.cxx.

307{ fNuPaths.push_back(p); }
std::vector< NuPath > fNuPaths
Vector of neutrino paths.
Definition: PMNS_Base.h:295

References OscProb::PMNS_Base::fNuPaths.

Referenced by OscProb::PMNS_Base::AddPath(), OscProb::PMNS_Base::SetAtt(), OscProb::PMNS_Base::SetPath(), and SetTestPath().

◆ AlgorithmDensityMatrix()

double PMNS_Avg::AlgorithmDensityMatrix ( int  flvi,
int  flvf 
)
protectedvirtual

Algorithm for the transformations on the density matrix

Algorithm for the transformations on the density matrix

Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
Returns
Average neutrino oscillation probability

Definition at line 847 of file PMNS_Avg.cxx.

848{
849 fdensityMatrix[flvi][flvi] = 1;
850
851 RotateDensityM(true, fVcosT);
853 RotateDensityM(false, fVcosT);
854
855 RotateDensityM(true, fVInvE);
857 RotateDensityM(false, fVInvE);
858
860
861 return real(fdensityMatrix[flvf][flvf]);
862}
double fdInvE
Bin's width for the inverse of energy in GeV-1.
Definition: PMNS_Avg.h:180
vectorD flambdaCosT
Eigenvectors of K_cosTheta.
Definition: PMNS_Avg.h:192
matrixC fVcosT
Eigenvalues of K_cosTheta.
Definition: PMNS_Avg.h:193
matrixC fevolutionMatrixS
Definition: PMNS_Avg.h:173
matrixC fdensityMatrix
The neutrino density matrix state.
Definition: PMNS_Avg.h:195
matrixC fVInvE
Eigenvalues of K_invE.
Definition: PMNS_Avg.h:185
double fdcosT
Bin's width for angle.
Definition: PMNS_Avg.h:188
virtual void RotateDensityM(bool to_basis, matrixC V)
Apply rotation to the density matrix.
Definition: PMNS_Avg.cxx:872
virtual void HadamardProduct(vectorD lambda, double dbin)
to the density matrix
Definition: PMNS_Avg.cxx:908
vectorD flambdaInvE
Eigenvectors of K_invE.
Definition: PMNS_Avg.h:184
static const double kGeV2eV
GeV to eV.
Definition: PMNS_Base.h:217

References fdcosT, fdensityMatrix, fdInvE, fevolutionMatrixS, flambdaCosT, flambdaInvE, fVcosT, fVInvE, HadamardProduct(), OscProb::PMNS_Base::kGeV2eV, and RotateDensityM().

Referenced by AvgAlgo().

◆ AvgAlgo() [1/2]

double PMNS_Avg::AvgAlgo ( int  flvi,
int  flvf,
double  InvE,
double  dInvE,
double  cosT,
double  dcosT 
)
protectedvirtual

Algorithm for the compute of the average probability over a bin of 1oE and cosT

Algorithm for the compute of the average probability over a bin of 1oE and cosT

Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
InvE- The neutrino 1/E value in the bin center in GeV-1
dInvE- The 1/E bin width in GeV-1
cosT- The cosine of the neutrino angle
dcosT- The cosT bin width
Returns
Average neutrino oscillation probability

Definition at line 813 of file PMNS_Avg.cxx.

815{
816 fPrem.FillPath(cosT);
818
819 // reset K et S et Ve et lambdaE
821
822 SetEnergy(1 / InvE);
823 SetCosT(cosT);
824 SetwidthBin(dInvE, dcosT);
825
826 fminRsq = pow(fDetRadius * sqrt(1 - cosT * cosT), 2);
827
828 // Propagate -> get S and K matrix (on the whole path)
830
831 // DiagolK -> get VE and lambdaE
834
835 return AlgorithmDensityMatrix(flvi, flvf);
836}
virtual std::vector< NuPath > GetNuPath()
virtual void PropagateTaylor()
Propagate neutrino through full path.
Definition: PMNS_Avg.cxx:341
virtual void SolveK(complexD K[3][3], vectorD &lambda, matrixC &V)
Solve the K matrix.
Definition: PMNS_Avg.cxx:408
virtual void SetCosT(double cosT)
Set neutrino angle.
Definition: PMNS_Avg.cxx:97
complexD fKInvE[3][3]
Definition: PMNS_Avg.h:182
double fDetRadius
Definition: PMNS_Avg.h:200
complexD fKcosT[3][3]
K matrix for neutrino angle for the entire path.
Definition: PMNS_Avg.h:191
virtual double AlgorithmDensityMatrix(int flvi, int flvf)
Definition: PMNS_Avg.cxx:847
virtual void SetEnergy(double E)
Set the neutrino energy in GeV.
Definition: PMNS_Base.cxx:226
virtual void SetPath(NuPath p)
Set a single path.
Definition: PMNS_Base.cxx:330
int FillPath(double cosT, double phi=0)
Fill the path sequence in a vector.
Definition: PremModel.cxx:347

References AlgorithmDensityMatrix(), fDetRadius, OscProb::PremModel::FillPath(), fKcosT, fKInvE, flambdaCosT, flambdaInvE, fminRsq, fPrem, fVcosT, fVInvE, OscProb::EarthModelBase::GetNuPath(), InitializeTaylorsVectors(), PropagateTaylor(), SetCosT(), OscProb::PMNS_Base::SetEnergy(), OscProb::PMNS_Base::SetPath(), SetwidthBin(), and SolveK().

◆ AvgAlgo() [2/2]

double PMNS_Avg::AvgAlgo ( int  flvi,
int  flvf,
double  LoE,
double  dLoE,
double  L 
)
protectedvirtual

Algorithm for the compute of the average probability over a bin of LoE

Algorithm for the compute of the average probability over a bin of LoE

Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
LoE- The neutrino L/E value in the bin center in km/GeV
dLoE- The L/E bin width in km/GeV
L- The length of the path in km
Returns
Average neutrino oscillation probability

Definition at line 580 of file PMNS_Avg.cxx.

581{
582 // Set width bin as 1/E
583 double d1oE = dLoE / L;
584
585 // reset K et S et Ve et lambdaE
587
588 SetEnergy(L / LoE);
589 SetwidthBin(d1oE, 0);
590
591 // Propagate -> get S and K matrix (on the whole path)
593
594 // DiagolK -> get VE and lambdaE
596
597 // return fct avr proba
598 return AvgFormula(flvi, flvf, d1oE / kGeV2eV, flambdaInvE, fVInvE);
599}
virtual double AvgFormula(int flvi, int flvf, double dbin, vectorD flambda, matrixC fV)
Definition: PMNS_Avg.cxx:442

References AvgFormula(), fKInvE, flambdaInvE, fVInvE, InitializeTaylorsVectors(), OscProb::PMNS_Base::kGeV2eV, PropagateTaylor(), OscProb::PMNS_Base::SetEnergy(), SetwidthBin(), and SolveK().

Referenced by AvgProbLoE().

◆ AvgAlgoCosT()

double PMNS_Avg::AvgAlgoCosT ( int  flvi,
int  flvf,
double  E,
double  cosT,
double  dcosT 
)
protectedvirtual

Algorithm for the compute of the average probability over a bin of cosT

Algorithm for the compute of the average probability over a bin of cosT

Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
E- The neutrino energy in GeV
cosT- The cosine of the neutrino angle
dcosT- The cosT bin width
Returns
Average neutrino oscillation probability

Definition at line 658 of file PMNS_Avg.cxx.

660{
661 // reset K et S et Ve et lambdaE
663
664 SetEnergy(E);
665 SetCosT(cosT);
666 SetwidthBin(0, dcosT);
667
668 fPrem.FillPath(cosT);
670
671 fminRsq = pow(fDetRadius * sqrt(1 - cosT * cosT), 2);
672
673 // Propagate -> get S and K matrix (on the whole path)
675
676 // DiagolK -> get VE and lambdaE
678
679 // return fct avr proba
680 return AvgFormula(flvi, flvf, fdcosT, flambdaCosT, fVcosT);
681}

References AvgFormula(), fdcosT, fDetRadius, OscProb::PremModel::FillPath(), fKcosT, flambdaCosT, fminRsq, fPrem, fVcosT, OscProb::EarthModelBase::GetNuPath(), InitializeTaylorsVectors(), PropagateTaylor(), SetCosT(), OscProb::PMNS_Base::SetEnergy(), OscProb::PMNS_Base::SetPath(), SetwidthBin(), and SolveK().

Referenced by AvgProb().

◆ AvgFormula()

double PMNS_Avg::AvgFormula ( int  flvi,
int  flvf,
double  dbin,
vectorD  lambda,
matrixC  V 
)
protectedvirtual

Formula for the average probability over a bin of width dbin

Formula for the average probability of flvi going to flvf over a bin of width dbin with a Taylor expansion.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
dbin- The width of the bin
lambda- The eigenvalues of K
V- The eigenvectors of K
Returns
Average neutrino oscillation probability

Definition at line 442 of file PMNS_Avg.cxx.

444{
445 vectorC SV = vectorC(fNumNus, 0);
446
447 for (int i = 0; i < fNumNus; i++) {
448 for (int k = 0; k < fNumNus; k++) {
449 SV[i] += fevolutionMatrixS[flvf][k] * V[k][i];
450 }
451 }
452
453 complexD buffer[3];
454
455 for (int n = 0; n < fNumNus; n++) { buffer[n] = SV[n] * conj(V[flvi][n]); }
456
457 complexD sinc[fNumNus][fNumNus];
458
459 for (int j = 0; j < fNumNus; j++) {
460 sinc[j][j] = 1;
461
462 for (int i = 0; i < j; i++) {
463 double arg = (lambda[i] - lambda[j]) * dbin / 2;
464 sinc[i][j] = sin(arg) / arg;
465 sinc[j][i] = sinc[i][j];
466 }
467 }
468
469 complexD P = 0;
470
471 for (int j = 0; j < fNumNus; j++) {
472 for (int i = 0; i < fNumNus; i++) {
473 P += buffer[i] * conj(buffer[j]) * sinc[j][i];
474 }
475 }
476
477 return real(P);
478}
virtual double P(int flv)
Return the probability of final state in flavour flv.
Definition: PMNS_Base.cxx:1058
int fNumNus
Number of neutrino flavours.
Definition: PMNS_Base.h:277
std::complex< double > complexD
Definition: Definitions.h:21
std::vector< complexD > vectorC
Definition: Definitions.h:22

References fevolutionMatrixS, OscProb::PMNS_Base::fNumNus, and OscProb::PMNS_Base::P().

Referenced by AvgAlgo(), and AvgAlgoCosT().

◆ AvgFormulaExtrapolation()

double PMNS_Avg::AvgFormulaExtrapolation ( int  flvi,
int  flvf,
double  dbin,
vectorD  lambda,
matrixC  V 
)
protectedvirtual

Fomula for the propability for flvi going to flvf for an energy E+dE using a first order Taylor expansion from a reference energy E.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
dE- The energy variation in GeV
lambda- The eigenvalues of K
V- The eigenvectors of K
Returns
Neutrino oscillation probability

Definition at line 1068 of file PMNS_Avg.cxx.

1070{
1071 vectorC SV = vectorC(fNumNus, 0);
1072
1073 for (int i = 0; i < fNumNus; i++) {
1074 for (int k = 0; k < fNumNus; k++) {
1075 SV[i] += fevolutionMatrixS[flvf][k] * V[k][i];
1076 }
1077 }
1078
1079 complexD buffer[3];
1080
1081 for (int n = 0; n < fNumNus; n++) { buffer[n] = SV[n] * conj(V[flvi][n]); }
1082
1083 complexD expo[fNumNus][fNumNus];
1084
1085 for (int j = 0; j < fNumNus; j++) {
1086 for (int i = 0; i < fNumNus; i++) {
1087 double arg = (lambda[j] - lambda[i]) * dbin;
1088 expo[j][i] = exp(complexD(0.0, arg));
1089 }
1090 }
1091
1092 complexD P = 0;
1093
1094 for (int j = 0; j < fNumNus; j++) {
1095 for (int i = 0; i < fNumNus; i++) {
1096 P += buffer[i] * conj(buffer[j]) * expo[j][i];
1097 }
1098 }
1099
1100 return real(P);
1101}

References fevolutionMatrixS, OscProb::PMNS_Base::fNumNus, and OscProb::PMNS_Base::P().

Referenced by ExtrapolationProb(), ExtrapolationProbCosT(), and ExtrapolationProbLoE().

◆ AvgProb() [1/4]

double PMNS_Avg::AvgProb ( int  flvi,
int  flvf,
double  E,
double  cosT,
double  dcosT 
)
virtual

Compute the average probability over a bin of cosTheta with a Taylor expansion

Compute the average probability of flvi going to flvf over a bin of angle cost with width dcosT with a Taylor expansion.

IMPORTANT: The PremModel object used must be copied by this class using the function SetPremModel.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
E- The neutrino energy in GeV
cosT- The cosine of the neutrino angle
dcosT- The cosT bin width
Returns
Average neutrino oscillation probability

Definition at line 623 of file PMNS_Avg.cxx.

625{
626 if (cosT > 0) return 0;
627
628 // if (fNuPaths.empty()) return 0; //@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
629
630 // Don't average zero width
631 if (dcosT == 0) return Prob(flvi, flvf, E);
632
633 vectorD samples = GetSamplePoints(E, cosT, dcosT);
634
635 double avgprob = 0;
636
637 // Loop over all sample points
638 for (int j = 1; j < int(samples.size()); j++) {
639 avgprob += AvgAlgoCosT(flvi, flvf, E, samples[j], samples[0]);
640 }
641
642 // Return average of probabilities
643 return avgprob / (samples.size() - 1);
644}
virtual double AvgAlgoCosT(int flvi, int flvf, double E, double cosT, double dcosT)
Definition: PMNS_Avg.cxx:658
virtual vectorD GetSamplePoints(double LoE, double dLoE)
Definition: PMNS_Avg.cxx:939
virtual double Prob(vectorC nu_in, int flvf)
Compute the probability of nu_in going to flvf.
Definition: PMNS_Base.cxx:1114
std::vector< double > vectorD
Definition: Definitions.h:18

References AvgAlgoCosT(), GetSamplePoints(), and OscProb::PMNS_Base::Prob().

◆ AvgProb() [2/4]

double PMNS_Avg::AvgProb ( int  flvi,
int  flvf,
double  E,
double  dE 
)
virtual

Compute the average probability over a bin of energy with a Taylor expansion

Compute the average probability of flvi going to flvf over a bin of energy E with width dE with a Taylor expansion.

This gets transformed into L/E, since the oscillation terms have arguments linear in 1/E and not E.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
E- The neutrino energy in GeV
dE- The energy bin width in GeV
Returns
Average neutrino oscillation probability

Reimplemented from OscProb::PMNS_Base.

Definition at line 501 of file PMNS_Avg.cxx.

502{
503 if (E <= 0) return 0;
504
505 if (fNuPaths.empty()) return 0;
506
507 // Don't average zero width
508 if (dE <= 0) return Prob(flvi, flvf, E);
509
510 vectorD Ebin = ConvertEtoLoE(E, dE);
511
512 // return fct avr proba
513 return AvgProbLoE(flvi, flvf, Ebin[0], Ebin[1]);
514}
virtual double AvgProbLoE(int flvi, int flvf, double LoE, double dLoE)
Definition: PMNS_Avg.cxx:539
virtual vectorD ConvertEtoLoE(double E, double dE)
Definition: PMNS_Base.cxx:1516

References AvgProbLoE(), OscProb::PMNS_Base::ConvertEtoLoE(), OscProb::PMNS_Base::fNuPaths, and OscProb::PMNS_Base::Prob().

Referenced by AvgProb(), and AvgProbLoE().

◆ AvgProb() [3/4]

double PMNS_Avg::AvgProb ( int  flvi,
int  flvf,
double  E,
double  dE,
double  cosT,
double  dcosT 
)
virtual

Compute the average probability over a bin of cosTheta and energy with a Taylor expansion

Compute the average probability of flvi going to flvf over a bin of energy E and angle cosT with width dE and dcosT with a Taylor expansion.

This gets transformed into L/E, since the oscillation terms have arguments linear in 1/E and not E.

IMPORTANT: The function SetPremLayers must be used in the macro file to make this function work. The argument for SetPremLayers must be premModel.GetPremLayers().

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
E- The neutrino energy in GeV
dE- The energy bin width in GeV
cosT- The cosine of the neutrino angle
dcosT- The cosT bin width
Returns
Average neutrino oscillation probability

Definition at line 711 of file PMNS_Avg.cxx.

713{
714 if (E <= 0) return 0;
715 if (cosT > 0) return 0;
716
717 if (fNuPaths.empty()) return 0;
718
719 // Don't average zero width
720 if (dE <= 0 && dcosT == 0) return Prob(flvi, flvf, E);
721 if (dE <= 0) return AvgProb(flvi, flvf, E, cosT, dcosT);
722 if (dcosT == 0) return AvgProb(flvi, flvf, E, dE);
723
724 vectorD Ebin = ConvertEtoLoE(E, dE);
725
726 return AvgProbLoE(flvi, flvf, Ebin[0], Ebin[1], cosT, dcosT);
727}
virtual double AvgProb(int flvi, int flvf, double E, double dE)
Definition: PMNS_Avg.cxx:501

References AvgProb(), AvgProbLoE(), OscProb::PMNS_Base::ConvertEtoLoE(), OscProb::PMNS_Base::fNuPaths, and OscProb::PMNS_Base::Prob().

◆ AvgProb() [4/4]

double PMNS_Base::AvgProb ( vectorC  nu_in,
int  flvf,
double  E,
double  dE = 0 
)
virtualinherited

Compute the average probability of nu_in going to flvf over a bin of energy E with width dE.

This gets transformed into L/E, since the oscillation terms have arguments linear in L/E and not E.

This function works best for single paths. In multiple paths the accuracy may be somewhat worse. If needed, average over smaller energy ranges.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
nu_in- The neutrino initial state in flavour.
flvf- The neutrino final flavour.
E- The neutrino energy in the bin center in GeV
dE- The energy bin width in GeV
Returns
Average neutrino oscillation probability

Definition at line 1568 of file PMNS_Base.cxx.

1569{
1570 // Do nothing if energy is not positive
1571 if (E <= 0) return 0;
1572
1573 if (fNuPaths.empty()) return 0;
1574
1575 // Don't average zero width
1576 if (dE <= 0) return Prob(nu_in, flvf, E);
1577
1578 vectorD LoEbin = ConvertEtoLoE(E, dE);
1579
1580 // Compute average in LoE
1581 return AvgProbLoE(nu_in, flvf, LoEbin[0], LoEbin[1]);
1582}
virtual double AvgProbLoE(vectorC nu_in, int flvf, double LoE, double dLoE=0)
Compute the average probability over a bin of L/E.
Definition: PMNS_Base.cxx:1643

References OscProb::PMNS_Base::AvgProbLoE(), OscProb::PMNS_Base::ConvertEtoLoE(), OscProb::PMNS_Base::fNuPaths, and OscProb::PMNS_Base::Prob().

Referenced by OscProb::PMNS_Base::AvgProb(), CheckProb(), and SaveTestFile().

◆ AvgProbLoE() [1/3]

double PMNS_Avg::AvgProbLoE ( int  flvi,
int  flvf,
double  LoE,
double  dLoE 
)
virtual

Compute the average probability over a bin of LoE with a Taylor expansion

Compute the average probability of flvi going to flvf over a bin of energy L/E with width dLoE with a Taylor expansion.

The probabilities are weighted by (L/E)^-2 so that event density is flat in energy. This avoids giving too much weight to low energies. Better approximations would be achieved if we used an interpolated event density.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
LoE- The neutrino L/E value in the bin center in km/GeV
dLoE- The L/E bin width in km/GeV
Returns
Average neutrino oscillation probability

Reimplemented from OscProb::PMNS_Base.

Definition at line 539 of file PMNS_Avg.cxx.

540{
541 if (LoE <= 0) return 0;
542
543 if (fNuPaths.empty()) return 0;
544
545 // Don't average zero width
546 if (dLoE <= 0) return Prob(flvi, flvf, fPath.length / LoE);
547
548 // Get sample points for this bin
549 vectorD samples = GetSamplePoints(LoE, dLoE);
550
551 double avgprob = 0;
552 double L = fPath.length;
553 double sumw = 0;
554
555 // Loop over all sample points
556 for (int j = 1; j < int(samples.size()); j++) {
557 double w = 1. / pow(samples[j], 2);
558
559 avgprob += w * AvgAlgo(flvi, flvf, samples[j], samples[0], L);
560
561 sumw += w;
562 }
563
564 // Return average of probabilities
565 return avgprob / sumw;
566}
virtual double AvgAlgo(int flvi, int flvf, double LoE, double dLoE, double L)
Definition: PMNS_Avg.cxx:580
NuPath fPath
Current neutrino path.
Definition: PMNS_Base.h:296
double length
The length of the path segment in km.
Definition: NuPath.h:78

References AvgAlgo(), OscProb::PMNS_Base::fNuPaths, OscProb::PMNS_Base::fPath, GetSamplePoints(), OscProb::NuPath::length, and OscProb::PMNS_Base::Prob().

Referenced by AvgProb(), and AvgProbLoE().

◆ AvgProbLoE() [2/3]

double PMNS_Avg::AvgProbLoE ( int  flvi,
int  flvf,
double  LoE,
double  dLoE,
double  cosT,
double  dcosT 
)
virtual

Compute the average probability over a bin of cosTheta and LoE with a Taylor expansion

Compute the average probability of flvi going to flvf over a bin of energy L/E and cosT with width dLoE and dcosT with a Taylor expansion.

The probabilities are weighted by (L/E)^-2 so that event density is flat in energy. This avoids giving too much weight to low energies. Better approximations would be achieved if we used an interpolated event density.

IMPORTANT: The PremModel object used must be copied by this class using the function SetPremModel.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
LoE- The neutrino L/E value in the bin center in km/GeV
dLoE- The L/E bin width in km/GeV
cosT- The cosine of the neutrino angle
dcosT- The cosT bin width
Returns
Average neutrino oscillation probability

chg ici

Definition at line 758 of file PMNS_Avg.cxx.

760{
761 if (LoE <= 0) return 0;
762 if (cosT > 0) return 0;
763
764 // if (fNuPaths.empty()) return 0;
765
766 // Don't average zero width
767 if (dLoE <= 0 && dcosT == 0) return Prob(flvi, flvf, fPath.length / LoE);
768 if (dLoE <= 0)
769 return AvgProb(flvi, flvf, fPath.length / LoE, cosT, dcosT);
770 if (dcosT == 0) return AvgProbLoE(flvi, flvf, LoE, dLoE);
771
772 // Make sample with 1oE and not LoE
773 matrixC samples =
774 GetSamplePoints(LoE / fPath.length, dLoE / fPath.length, cosT, dcosT);
775
776 int rows = samples.size();
777 int cols = samples[0].size();
778
779 double avgprob = 0;
780 double sumw = 0;
781
782 // Loop over all sample points
783 for (int k = 1; k < int(rows); k++) {
784 for (int l = 1; l < int(cols); l++) {
785 double w = 1. / pow(real(samples[k][l]), 2);
786
787 avgprob +=
788 w * AvgAlgo(flvi, flvf, real(samples[k][l]), real(samples[0][0]),
789 imag(samples[k][l]), imag(samples[0][0]));
790
791 sumw += w;
792 }
793 }
794
795 // Return average of probabilities
796 return avgprob / ((sumw));
797}
std::vector< vectorC > matrixC
Definition: Definitions.h:23

References AvgAlgo(), AvgProb(), AvgProbLoE(), OscProb::PMNS_Base::fPath, GetSamplePoints(), OscProb::NuPath::length, and OscProb::PMNS_Base::Prob().

◆ AvgProbLoE() [3/3]

double PMNS_Base::AvgProbLoE ( vectorC  nu_in,
int  flvf,
double  LoE,
double  dLoE = 0 
)
virtualinherited

Compute the average probability of nu_in going to flvf over a bin of L/E with width dLoE.

The probabilities are weighted by (L/E)^-2 so that event density is flat in energy. This avoids giving too much weight to low energies. Better approximations would be achieved if we used an interpolated event density.

This function works best for single paths. In multiple paths the accuracy may be somewhat worse. If needed, average over smaller L/E ranges.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
nu_in- The neutrino intial state in flavour basis.
flvf- The neutrino final flavour.
LoE- The neutrino L/E value in the bin center in km/GeV
dLoE- The L/E bin width in km/GeV
Returns
Average neutrino oscillation probability

Definition at line 1643 of file PMNS_Base.cxx.

1644{
1645 // Do nothing if L/E is not positive
1646 if (LoE <= 0) return 0;
1647
1648 if (fNuPaths.empty()) return 0;
1649
1650 // Make sure fPath is set
1651 // Use average if multiple paths
1653
1654 // Set the energy at bin center
1655 SetEnergy(fPath.length / LoE);
1656
1657 // Don't average zero width
1658 if (dLoE <= 0) return Prob(nu_in, flvf);
1659
1660 // Get sample points for this bin
1661 vectorD samples = GetSamplePoints(LoE, dLoE);
1662
1663 // Variables to fill sample
1664 // probabilities and weights
1665 double sumw = 0;
1666 double prob = 0;
1667 double length = fPath.length;
1668
1669 // Loop over all sample points
1670 for (int j = 0; j < int(samples.size()); j++) {
1671 // Set (L/E)^-2 weights
1672 double w = 1. / pow(samples[j], 2);
1673
1674 // Add weighted probability
1675 prob += w * Prob(nu_in, flvf, length / samples[j]);
1676
1677 // Increment sum of weights
1678 sumw += w;
1679 }
1680
1681 // Return weighted average of probabilities
1682 return prob / sumw;
1683}
virtual void SetCurPath(NuPath p)
Set the path currently in use by the class.
Definition: PMNS_Base.cxx:274
virtual vectorD GetSamplePoints(double LoE, double dLoE)
Compute the sample points for a bin of L/E with width dLoE.
Definition: PMNS_Base.cxx:1985
NuPath AvgPath(NuPath &p1, NuPath &p2)
Get the average of two paths.
Definition: NuPath.cxx:27

References OscProb::AvgPath(), OscProb::PMNS_Base::fNuPaths, OscProb::PMNS_Base::fPath, OscProb::PMNS_Base::GetSamplePoints(), OscProb::NuPath::length, OscProb::PMNS_Base::Prob(), OscProb::PMNS_Base::SetCurPath(), and OscProb::PMNS_Base::SetEnergy().

Referenced by OscProb::PMNS_Base::AvgProb(), and OscProb::PMNS_Base::AvgProbLoE().

◆ AvgProbMatrix()

matrixD PMNS_Base::AvgProbMatrix ( int  nflvi,
int  nflvf,
double  E,
double  dE = 0 
)
virtualinherited

Compute the average probability matrix over a bin of energy

Compute the average probability matrix for nflvi and nflvf over a bin of energy E with width dE.

This gets transformed into L/E, since the oscillation terms have arguments linear in L/E and not E.

This function works best for single paths. In multiple paths the accuracy may be somewhat worse. If needed, average over smaller energy ranges.

Parameters
nflvi- The number of initial flavours in the matrix.
nflvf- The number of final flavours in the matrix.
E- The neutrino energy in the bin center in GeV
dE- The energy bin width in GeV
Returns
Average neutrino oscillation probabilities

Definition at line 1861 of file PMNS_Base.cxx.

1862{
1863 matrixD probs(nflvi, vectorD(nflvf, 0));
1864
1865 // Do nothing if energy is not positive
1866 if (E <= 0) return probs;
1867
1868 if (fNuPaths.empty()) return probs;
1869
1870 // Don't average zero width
1871 if (dE <= 0) return ProbMatrix(nflvi, nflvf, E);
1872
1873 vectorD LoEbin = ConvertEtoLoE(E, dE);
1874
1875 // Compute average in LoE
1876 return AvgProbMatrixLoE(nflvi, nflvf, LoEbin[0], LoEbin[1]);
1877}
virtual matrixD AvgProbMatrixLoE(int nflvi, int nflvf, double LoE, double dLoE=0)
Compute the average probability matrix over a bin of L/E.
Definition: PMNS_Base.cxx:1900
virtual matrixD ProbMatrix(int nflvi, int nflvf)
Compute the probability matrix.
Definition: PMNS_Base.cxx:1387
std::vector< vectorD > matrixD
Definition: Definitions.h:19

References OscProb::PMNS_Base::AvgProbMatrixLoE(), OscProb::PMNS_Base::ConvertEtoLoE(), OscProb::PMNS_Base::fNuPaths, and OscProb::PMNS_Base::ProbMatrix().

◆ AvgProbMatrixLoE()

matrixD PMNS_Base::AvgProbMatrixLoE ( int  nflvi,
int  nflvf,
double  LoE,
double  dLoE = 0 
)
virtualinherited

Compute the average probability matrix for nflvi and nflvf over a bin of L/E with width dLoE.

The probabilities are weighted by (L/E)^-2 so that event density is flat in energy. This avoids giving too much weight to low energies. Better approximations would be achieved if we used an interpolated event density.

This function works best for single paths. In multiple paths the accuracy may be somewhat worse. If needed, average over smaller L/E ranges.

Parameters
nflvi- The number of initial flavours in the matrix.
nflvf- The number of final flavours in the matrix.
LoE- The neutrino L/E value in the bin center in km/GeV
dLoE- The L/E bin width in km/GeV
Returns
Average neutrino oscillation probabilities

Definition at line 1900 of file PMNS_Base.cxx.

1902{
1903 matrixD probs(nflvi, vectorD(nflvf, 0));
1904
1905 // Do nothing if L/E is not positive
1906 if (LoE <= 0) return probs;
1907
1908 if (fNuPaths.empty()) return probs;
1909
1910 // Make sure fPath is set
1911 // Use average if multiple paths
1913
1914 // Set the energy at bin center
1915 SetEnergy(fPath.length / LoE);
1916
1917 // Don't average zero width
1918 if (dLoE <= 0) return ProbMatrix(nflvi, nflvf);
1919
1920 // Get sample points for this bin
1921 vectorD samples = GetSamplePoints(LoE, dLoE);
1922
1923 // Variables to fill sample
1924 // probabilities and weights
1925 double sumw = 0;
1926 double length = fPath.length;
1927
1928 // Loop over all sample points
1929 for (int j = 0; j < int(samples.size()); j++) {
1930 // Set (L/E)^-2 weights
1931 double w = 1. / pow(samples[j], 2);
1932
1933 matrixD sample_probs = ProbMatrix(nflvi, nflvf, length / samples[j]);
1934
1935 for (int flvi = 0; flvi < nflvi; flvi++) {
1936 for (int flvf = 0; flvf < nflvf; flvf++) {
1937 // Add weighted probability
1938 probs[flvi][flvf] += w * sample_probs[flvi][flvf];
1939 }
1940 }
1941 // Increment sum of weights
1942 sumw += w;
1943 }
1944
1945 for (int flvi = 0; flvi < nflvi; flvi++) {
1946 for (int flvf = 0; flvf < nflvf; flvf++) {
1947 // Divide by total sampling weight
1948 probs[flvi][flvf] /= sumw;
1949 }
1950 }
1951
1952 // Return weighted average of probabilities
1953 return probs;
1954}

References OscProb::AvgPath(), OscProb::PMNS_Base::fNuPaths, OscProb::PMNS_Base::fPath, OscProb::PMNS_Base::GetSamplePoints(), OscProb::NuPath::length, OscProb::PMNS_Base::ProbMatrix(), OscProb::PMNS_Base::SetCurPath(), and OscProb::PMNS_Base::SetEnergy().

Referenced by OscProb::PMNS_Base::AvgProbMatrix().

◆ AvgProbVector() [1/2]

vectorD PMNS_Base::AvgProbVector ( int  flvi,
double  E,
double  dE = 0 
)
virtualinherited

Compute the average probability vector over a bin of energy

Compute the average probability of nu_in going to all flavours over a bin of energy E with width dE.

This gets transformed into L/E, since the oscillation terms have arguments linear in L/E and not E.

This function works best for single paths. In multiple paths the accuracy may be somewhat worse. If needed, average over smaller energy ranges.

Parameters
flvi- The neutrino starting flavour.
E- The neutrino energy in the bin center in GeV
dE- The energy bin width in GeV
Returns
Average neutrino oscillation probabilities

Definition at line 1729 of file PMNS_Base.cxx.

1730{
1731 ResetToFlavour(flvi);
1732 return AvgProbVector(fNuState, E, dE);
1733}
vectorC fNuState
The neutrino current state.
Definition: PMNS_Base.h:283
virtual vectorD AvgProbVector(vectorC nu_in, double E, double dE=0)
Definition: PMNS_Base.cxx:1753
virtual void ResetToFlavour(int flv)
Reset neutrino state to pure flavour flv.
Definition: PMNS_Base.cxx:1034

References OscProb::PMNS_Base::AvgProbVector(), OscProb::PMNS_Base::fNuState, and OscProb::PMNS_Base::ResetToFlavour().

◆ AvgProbVector() [2/2]

vectorD PMNS_Base::AvgProbVector ( vectorC  nu_in,
double  E,
double  dE = 0 
)
virtualinherited

Compute the average probability vector over a bin of energy

Compute the average probability of nu_in going to all flavours over a bin of energy E with width dE.

This gets transformed into L/E, since the oscillation terms have arguments linear in L/E and not E.

This function works best for single paths. In multiple paths the accuracy may be somewhat worse. If needed, average over smaller energy ranges.

Parameters
nu_in- The neutrino initial state in flavour.
E- The neutrino energy in the bin center in GeV
dE- The energy bin width in GeV
Returns
Average neutrino oscillation probabilities

Definition at line 1753 of file PMNS_Base.cxx.

1754{
1755 vectorD probs(fNumNus, 0);
1756
1757 // Do nothing if energy is not positive
1758 if (E <= 0) return probs;
1759
1760 if (fNuPaths.empty()) return probs;
1761
1762 // Don't average zero width
1763 if (dE <= 0) return ProbVector(nu_in, E);
1764
1765 vectorD LoEbin = ConvertEtoLoE(E, dE);
1766
1767 // Compute average in LoE
1768 return AvgProbVectorLoE(nu_in, LoEbin[0], LoEbin[1]);
1769}
virtual vectorD AvgProbVectorLoE(vectorC nu_in, double LoE, double dLoE=0)
Compute the average probability vector over a bin of L/E.
Definition: PMNS_Base.cxx:1791
virtual vectorD ProbVector(vectorC nu_in)
Definition: PMNS_Base.cxx:1250

References OscProb::PMNS_Base::AvgProbVectorLoE(), OscProb::PMNS_Base::ConvertEtoLoE(), OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::fNuPaths, and OscProb::PMNS_Base::ProbVector().

Referenced by OscProb::PMNS_Base::AvgProbVector().

◆ AvgProbVectorLoE() [1/2]

vectorD PMNS_Base::AvgProbVectorLoE ( int  flvi,
double  LoE,
double  dLoE = 0 
)
virtualinherited

Compute the average probability of flvi going to all flavours over a bin of L/E with width dLoE.

The probabilities are weighted by (L/E)^-2 so that event density is flat in energy. This avoids giving too much weight to low energies. Better approximations would be achieved if we used an interpolated event density.

This function works best for single paths. In multiple paths the accuracy may be somewhat worse. If needed, average over smaller L/E ranges.

Parameters
flvi- The neutrino starting flavour.
LoE- The neutrino L/E value in the bin center in km/GeV
dLoE- The L/E bin width in km/GeV
Returns
Average neutrino oscillation probabilities

Definition at line 1705 of file PMNS_Base.cxx.

1706{
1707 ResetToFlavour(flvi);
1708 return AvgProbVectorLoE(fNuState, LoE, dLoE);
1709}

References OscProb::PMNS_Base::AvgProbVectorLoE(), OscProb::PMNS_Base::fNuState, and OscProb::PMNS_Base::ResetToFlavour().

◆ AvgProbVectorLoE() [2/2]

vectorD PMNS_Base::AvgProbVectorLoE ( vectorC  nu_in,
double  LoE,
double  dLoE = 0 
)
virtualinherited

Compute the average probability of nu_in going to all flavours over a bin of L/E with width dLoE.

The probabilities are weighted by (L/E)^-2 so that event density is flat in energy. This avoids giving too much weight to low energies. Better approximations would be achieved if we used an interpolated event density.

This function works best for single paths. In multiple paths the accuracy may be somewhat worse. If needed, average over smaller L/E ranges.

Parameters
nu_in- The neutrino intial state in flavour basis.
LoE- The neutrino L/E value in the bin center in km/GeV
dLoE- The L/E bin width in km/GeV
Returns
Average neutrino oscillation probabilities

Definition at line 1791 of file PMNS_Base.cxx.

1792{
1793 vectorD probs(fNumNus, 0);
1794
1795 // Do nothing if L/E is not positive
1796 if (LoE <= 0) return probs;
1797
1798 if (fNuPaths.empty()) return probs;
1799
1800 // Make sure fPath is set
1801 // Use average if multiple paths
1803
1804 // Set the energy at bin center
1805 SetEnergy(fPath.length / LoE);
1806
1807 // Don't average zero width
1808 if (dLoE <= 0) return ProbVector(nu_in);
1809
1810 // Get sample points for this bin
1811 vectorD samples = GetSamplePoints(LoE, dLoE);
1812
1813 // Variables to fill sample
1814 // probabilities and weights
1815 double sumw = 0;
1816 double length = fPath.length;
1817
1818 // Loop over all sample points
1819 for (int j = 0; j < int(samples.size()); j++) {
1820 // Set (L/E)^-2 weights
1821 double w = 1. / pow(samples[j], 2);
1822
1823 vectorD sample_probs = ProbVector(nu_in, length / samples[j]);
1824
1825 for (int i = 0; i < fNumNus; i++) {
1826 // Add weighted probability
1827 probs[i] += w * sample_probs[i];
1828 }
1829 // Increment sum of weights
1830 sumw += w;
1831 }
1832
1833 for (int i = 0; i < fNumNus; i++) {
1834 // Divide by total sampling weight
1835 probs[i] /= sumw;
1836 }
1837
1838 // Return weighted average of probabilities
1839 return probs;
1840}

References OscProb::AvgPath(), OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::fNuPaths, OscProb::PMNS_Base::fPath, OscProb::PMNS_Base::GetSamplePoints(), OscProb::NuPath::length, OscProb::PMNS_Base::ProbVector(), OscProb::PMNS_Base::SetCurPath(), and OscProb::PMNS_Base::SetEnergy().

Referenced by OscProb::PMNS_Base::AvgProbVector(), and OscProb::PMNS_Base::AvgProbVectorLoE().

◆ BuildHms()

void PMNS_Base::BuildHms ( )
protectedvirtualinherited

Build Hms = H*2E, where H is the Hamiltonian in vacuum on flavour basis and E is the neutrino energy in eV. Hms is effectively the matrix of masses squared.

This is a hermitian matrix, so only the upper triangular part needs to be filled

The construction of the Hamiltonian avoids computing terms that are simply zero. This has a big impact in the computation time.

Reimplemented in OscProb::PMNS_Decay, OscProb::PMNS_OQS, and OscProb::PMNS_SNSI.

Definition at line 955 of file PMNS_Base.cxx.

956{
957 // Check if anything changed
958 if (fBuiltHms) return;
959
960 // Tag to recompute eigensystem
961 fGotES = false;
962
963 for (int j = 0; j < fNumNus; j++) {
964 // Set mass splitting
965 fHms[j][j] = fDm[j];
966 // Reset off-diagonal elements
967 for (int i = 0; i < j; i++) { fHms[i][j] = 0; }
968 // Rotate j neutrinos
969 for (int i = 0; i < j; i++) { RotateH(i, j, fHms); }
970 }
971
972 ClearCache();
973
974 // Tag as built
975 fBuiltHms = true;
976}
virtual void RotateH(int i, int j, matrixC &Ham)
Rotate the Hamiltonian by theta_ij and delta_ij.
Definition: PMNS_Base.cxx:822
matrixC fHms
matrix H*2E in eV^2
Definition: PMNS_Base.h:284
bool fGotES
Tag to avoid recalculating eigensystem.
Definition: PMNS_Base.h:299
bool fBuiltHms
Tag to avoid rebuilding Hms.
Definition: PMNS_Base.h:298
vectorD fDm
m^2_i - m^2_1 in vacuum
Definition: PMNS_Base.h:279
virtual void ClearCache()
Clear the cache.
Definition: PMNS_Base.cxx:111

References OscProb::PMNS_Base::ClearCache(), OscProb::PMNS_Base::fBuiltHms, OscProb::PMNS_Base::fDm, OscProb::PMNS_Base::fGotES, OscProb::PMNS_Base::fHms, OscProb::PMNS_Base::fNumNus, and OscProb::PMNS_Base::RotateH().

Referenced by OscProb::PMNS_OQS::BuildHms(), OscProb::PMNS_Sterile::SolveHam(), and OscProb::PMNS_Fast::SolveHamMatter().

◆ BuildKcosT()

void PMNS_Avg::BuildKcosT ( double  L)
protectedvirtual

Build K matrix for angle in flavor basis

The variable for which a Taylor expansion is done here is not directly the angle but the cosine of the angle

Parameters
L- The length of the layer in km

Definition at line 180 of file PMNS_Avg.cxx.

181{
182 UpdateHam();
183
184 double dL = LnDerivative() * kKm2eV;
185
186 for (int j = 0; j < fNumNus; j++) {
187 for (int i = 0; i <= j; i++) {
188 fKflavor[i][j] = dL * fHam[i][j];
189
190 if (i != j) { fKflavor[j][i] = conj(fKflavor[i][j]); }
191 }
192 }
193}
matrixC fKflavor
K matrix in flavor basis for one layer.
Definition: PMNS_Avg.h:178
virtual double LnDerivative()
Definition: PMNS_Avg.cxx:199
static const double kKm2eV
km to eV^-1
Definition: PMNS_Base.h:215
virtual void UpdateHam()
Build the full Hamiltonian.
Definition: PMNS_Fast.cxx:69
complexD fHam[3][3]
The full hamiltonian.
Definition: PMNS_Fast.h:64

References OscProb::PMNS_Fast::fHam, fKflavor, OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::kKm2eV, LnDerivative(), and OscProb::PMNS_Fast::UpdateHam().

Referenced by PropagatePathTaylor().

◆ BuildKE()

void PMNS_Avg::BuildKE ( double  L)
protectedvirtual

Build K matrix for the inverse of energy in mass basis.

The variable for which a Taylor expansion is done here is not directly the energy but the inverse of it. This change of variable allow to express the hamiltonien as linear with respect to this new variable.

Parameters
L- The length of the layer in km

Definition at line 122 of file PMNS_Avg.cxx.

123{
124 double lenghtEV = L * kKm2eV; // L in eV-1
125 double bufK = lenghtEV * 0.5; // L/2 in eV-1
126
127 complexD buffer[3];
128
129 for (int i = 0; i < fNumNus; i++) {
130 complexD Hms_kl;
131
132 for (int l = 0; l < fNumNus; l++) {
133 buffer[l] = 0;
134
135 for (int k = 0; k < fNumNus; k++) {
136 if (k <= l)
137 Hms_kl = fHms[k][l];
138 else
139 Hms_kl = conj(fHms[l][k]);
140
141 if (fIsNuBar && k != l) Hms_kl = conj(Hms_kl);
142
143 buffer[l] += conj(fEvec[k][i]) * Hms_kl;
144 }
145 }
146
147 for (int j = 0; j <= i; j++) {
148 fKmass[i][j] = 0;
149
150 for (int l = 0; l < fNumNus; l++) {
151 fKmass[i][j] += buffer[l] * fEvec[l][j];
152 }
153
154 complexD C;
155
156 if (i == j) { C = complexD(1, 0); }
157 else {
158 double arg = (fEval[i] - fEval[j]) * lenghtEV;
159
160 C = (complexD(cos(arg), sin(arg)) - complexD(1, 0.0)) /
161 complexD(0.0, arg);
162 }
163
164 fKmass[i][j] *= bufK * C;
165
166 if (i != j) fKmass[j][i] = conj(fKmass[i][j]);
167 }
168 }
169}
matrixC fKmass
K matrix in mass basis for one layer.
Definition: PMNS_Avg.h:177
bool fIsNuBar
Anti-neutrino flag.
Definition: PMNS_Base.h:293
matrixC fEvec
Eigenvectors of the Hamiltonian.
Definition: PMNS_Base.h:290
vectorD fEval
Eigenvalues of the Hamiltonian.
Definition: PMNS_Base.h:289

References OscProb::PMNS_Base::fEval, OscProb::PMNS_Base::fEvec, OscProb::PMNS_Base::fHms, OscProb::PMNS_Base::fIsNuBar, fKmass, OscProb::PMNS_Base::fNumNus, and OscProb::PMNS_Base::kKm2eV.

Referenced by PropagatePathTaylor().

◆ ClearCache()

void PMNS_Base::ClearCache ( )
virtualinherited

Clear the cache

Definition at line 111 of file PMNS_Base.cxx.

112{
113 fMixCache.clear();
114
115 // Set some better hash table parameters
116 fMixCache.max_load_factor(0.25);
117 fMixCache.reserve(512);
118}
std::unordered_set< EigenPoint > fMixCache
Caching set of eigensystems.
Definition: PMNS_Base.h:307

References OscProb::PMNS_Base::fMixCache.

Referenced by OscProb::PMNS_Base::BuildHms(), OscProb::PMNS_Base::PMNS_Base(), OscProb::PMNS_NUNM::SetAlpha(), OscProb::PMNS_LIV::SetaT(), OscProb::PMNS_NSI::SetCoupByIndex(), OscProb::PMNS_LIV::SetcT(), OscProb::PMNS_NSI::SetEps(), and OscProb::PMNS_NUNM::SetFracVnc().

◆ ClearPath()

void PMNS_Base::ClearPath ( )
virtualinherited

Clear the path vector.

Definition at line 287 of file PMNS_Base.cxx.

287{ fNuPaths.clear(); }

References OscProb::PMNS_Base::fNuPaths.

Referenced by OscProb::PMNS_Base::SetAtt(), and OscProb::PMNS_Base::SetPath().

◆ ConvertEtoLoE()

vectorD PMNS_Base::ConvertEtoLoE ( double  E,
double  dE 
)
protectedvirtualinherited

Convert a bin of energy into a bin of L/E

Parameters
E- energy bin center in GeV
dE- energy bin width in GeV
Returns
The L/E bin center and width in km/GeV

Definition at line 1516 of file PMNS_Base.cxx.

1517{
1518 // Make sure fPath is set
1519 // Use average if multiple paths
1521
1522 // Define L/E variables
1523 vectorD LoEbin(2);
1524
1525 // Set a minimum energy
1526 double minE = 0.1 * E;
1527
1528 // Transform range to L/E
1529 // Full range if low edge > minE
1530 if (E - dE / 2 > minE) {
1531 LoEbin[0] =
1532 0.5 * (fPath.length / (E - dE / 2) + fPath.length / (E + dE / 2));
1533 LoEbin[1] = fPath.length / (E - dE / 2) - fPath.length / (E + dE / 2);
1534 }
1535 // Else start at minE
1536 else {
1537 LoEbin[0] = 0.5 * (fPath.length / minE + fPath.length / (E + dE / 2));
1538 LoEbin[1] = fPath.length / minE - fPath.length / (E + dE / 2);
1539 }
1540
1541 return LoEbin;
1542}

References OscProb::AvgPath(), OscProb::PMNS_Base::fNuPaths, OscProb::PMNS_Base::fPath, OscProb::NuPath::length, and OscProb::PMNS_Base::SetCurPath().

Referenced by AvgProb(), OscProb::PMNS_Base::AvgProb(), OscProb::PMNS_Base::AvgProbMatrix(), and OscProb::PMNS_Base::AvgProbVector().

◆ ExtrapolationProb()

double PMNS_Avg::ExtrapolationProb ( int  flvi,
int  flvf,
double  E,
double  dE 
)
virtual

Compute the probability of flvi going to flvf for an energy E+dE

Compute the propability for flvi going to flvf for an energy E+dE using a first order Taylor expansion from a reference energy E.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
E- The reference energy in GeV
dE- The energy variation in GeV
Returns
Neutrino oscillation probability

Definition at line 1121 of file PMNS_Avg.cxx.

1122{
1123 // reset K et S et Ve et lambdaE
1125
1126 SetEnergy(E);
1127 SetwidthBin(1 / (E + dE) - 1 / E, 0);
1128
1129 // Propagate -> get S and K matrix (on the whole path)
1131
1132 // DiagolK -> get VE and lambdaE
1134
1135 return AvgFormulaExtrapolation(flvi, flvf, fdInvE / kGeV2eV, flambdaInvE,
1136 fVInvE);
1137}
virtual double AvgFormulaExtrapolation(int flvi, int flvf, double dbin, vectorD flambda, matrixC fV)
Formula for the extrapolation of probability.
Definition: PMNS_Avg.cxx:1068

References AvgFormulaExtrapolation(), fdInvE, fKInvE, flambdaInvE, fVInvE, InitializeTaylorsVectors(), OscProb::PMNS_Base::kGeV2eV, PropagateTaylor(), OscProb::PMNS_Base::SetEnergy(), SetwidthBin(), and SolveK().

◆ ExtrapolationProbCosT()

double PMNS_Avg::ExtrapolationProbCosT ( int  flvi,
int  flvf,
double  cosT,
double  dcosT 
)
virtual

Compute the probability of flvi going to flvf for an angle cosT+dcosT

Compute the propability for flvi going to flvf for an angle cosT+dcosT using a first order Taylor expansion from a reference angle cosT.

IMPORTANT: The PremModel object used must be copied by this class using the function SetPremModel.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
cosT- The reference angle
dcosT- The angle variation
Returns
Neutrino oscillation probability

Definition at line 1200 of file PMNS_Avg.cxx.

1202{
1203 fPrem.FillPath(cosT);
1205
1206 // reset K et S et Ve et lambdaE
1208
1209 // SetEnergy(E);
1210 SetCosT(cosT);
1211 SetwidthBin(0, dcosT);
1212
1213 fminRsq = pow(fDetRadius * sqrt(1 - cosT * cosT), 2);
1214
1215 // Propagate -> get S and K matrix (on the whole path)
1217
1218 // DiagolK -> get VE and lambdaE
1220
1221 return AvgFormulaExtrapolation(flvi, flvf, fdcosT, flambdaCosT, fVcosT);
1222}

References AvgFormulaExtrapolation(), fdcosT, fDetRadius, OscProb::PremModel::FillPath(), fKcosT, flambdaCosT, fminRsq, fPrem, fVcosT, OscProb::EarthModelBase::GetNuPath(), InitializeTaylorsVectors(), PropagateTaylor(), SetCosT(), OscProb::PMNS_Base::SetPath(), SetwidthBin(), and SolveK().

◆ ExtrapolationProbLoE()

double PMNS_Avg::ExtrapolationProbLoE ( int  flvi,
int  flvf,
double  LoE,
double  dLoE 
)
virtual

Compute the probability of flvi going to flvf at LoE+dLoE

Compute the propability for flvi going to flvf for an energy LoE+dLoE using a first order Taylor expansion from a reference value LoE.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
LoE- The reference energy in GeV
dLoE- The energy variation in GeV
Returns
Neutrino oscillation probability

Definition at line 1157 of file PMNS_Avg.cxx.

1159{
1160 // reset K et S et Ve et lambdaE
1162
1164 double L = fPath.length;
1165
1166 SetEnergy(L / LoE);
1167 SetwidthBin(dLoE / L, 0);
1168
1169 // Propagate -> get S and K matrix (on the whole path)
1171
1172 // DiagolK -> get VE and lambdaE
1174
1175 return AvgFormulaExtrapolation(flvi, flvf, dLoE * kGeV2eV / L, flambdaInvE,
1176 fVInvE);
1177}

References AvgFormulaExtrapolation(), OscProb::AvgPath(), fKInvE, flambdaInvE, OscProb::PMNS_Base::fNuPaths, OscProb::PMNS_Base::fPath, fVInvE, InitializeTaylorsVectors(), OscProb::PMNS_Base::kGeV2eV, OscProb::NuPath::length, PropagateTaylor(), OscProb::PMNS_Base::SetCurPath(), OscProb::PMNS_Base::SetEnergy(), SetwidthBin(), and SolveK().

◆ FillCache()

void PMNS_Base::FillCache ( )
protectedvirtualinherited

If using caching, save the eigensystem in memory

Reimplemented in OscProb::PMNS_LIV, and OscProb::PMNS_SNSI.

Definition at line 157 of file PMNS_Base.cxx.

158{
159 if (fUseCache) {
160 if (fMixCache.size() > fMaxCache) { fMixCache.erase(fMixCache.begin()); }
162 for (int i = 0; i < fNumNus; i++) {
163 fProbe.fEval[i] = fEval[i];
164 for (int j = 0; j < fNumNus; j++) { fProbe.fEvec[i][j] = fEvec[i][j]; }
165 }
166 fMixCache.insert(fProbe);
167 }
168}
double fEnergy
Neutrino energy.
Definition: PMNS_Base.h:292
int fMaxCache
Maximum cache size.
Definition: PMNS_Base.h:303
EigenPoint fProbe
EigenpPoint to try.
Definition: PMNS_Base.h:308
bool fUseCache
Flag for whether to use caching.
Definition: PMNS_Base.h:301
vectorD fEval
Eigenvalues to be cached.
Definition: EigenPoint.h:38
void SetVars(double e=0, NuPath p=NuPath(0, 0), bool n=false)
Set eigensystem parameters.
Definition: EigenPoint.cxx:39
matrixC fEvec
Eigenvectors to be cached.
Definition: EigenPoint.h:39

References OscProb::PMNS_Base::fEnergy, OscProb::EigenPoint::fEval, OscProb::PMNS_Base::fEval, OscProb::EigenPoint::fEvec, OscProb::PMNS_Base::fEvec, OscProb::PMNS_Base::fIsNuBar, OscProb::PMNS_Base::fMaxCache, OscProb::PMNS_Base::fMixCache, OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::fPath, OscProb::PMNS_Base::fProbe, OscProb::PMNS_Base::fUseCache, and OscProb::EigenPoint::SetVars().

Referenced by OscProb::PMNS_Sterile::SolveHam(), and OscProb::PMNS_Fast::SolveHamMatter().

◆ GetAngle()

double PMNS_Base::GetAngle ( int  i,
int  j 
)
virtualinherited

Get the mixing angle theta_ij in radians.

Requires that i<j. Will notify you if input is wrong. If i>j, will assume reverse order and swap i and j.

Parameters
i,j- the indices of theta_ij

Definition at line 570 of file PMNS_Base.cxx.

571{
572 if (i > j) {
573 cerr << "WARNING: First argument should be smaller than second argument"
574 << endl
575 << " Setting reverse order (Theta" << j << i << "). " << endl;
576 int temp = i;
577 i = j;
578 j = temp;
579 }
580 if (i < 1 || i > fNumNus - 1 || j < 2 || j > fNumNus) {
581 cerr << "ERROR: Theta" << i << j << " not valid for " << fNumNus
582 << " neutrinos. Returning zero." << endl;
583 return 0;
584 }
585
586 return fTheta[i - 1][j - 1];
587}
matrixD fTheta
theta[i][j] mixing angle
Definition: PMNS_Base.h:280

References OscProb::PMNS_Base::fNumNus, and OscProb::PMNS_Base::fTheta.

◆ GetDelta()

double PMNS_Base::GetDelta ( int  i,
int  j 
)
virtualinherited

Get the CP phase delta_ij in radians.

Requires that i+1<j. Will notify you if input is wrong. If i>j, will assume reverse order and swap i and j.

Parameters
i,j- the indices of delta_ij

Definition at line 638 of file PMNS_Base.cxx.

639{
640 if (i > j) {
641 cerr << "WARNING: First argument should be smaller than second argument"
642 << endl
643 << " Setting reverse order (Delta" << j << i << "). " << endl;
644 int temp = i;
645 i = j;
646 j = temp;
647 }
648 if (i < 1 || i > fNumNus - 1 || j < 2 || j > fNumNus) {
649 cerr << "ERROR: Delta" << i << j << " not valid for " << fNumNus
650 << " neutrinos. Returning zero." << endl;
651 return 0;
652 }
653 if (i + 1 == j) {
654 cerr << "WARNING: Rotation " << i << j << " is real. Returning zero."
655 << endl;
656 return 0;
657 }
658
659 return fDelta[i - 1][j - 1];
660}
matrixD fDelta
delta[i][j] CP violating phase
Definition: PMNS_Base.h:281

References OscProb::PMNS_Base::fDelta, and OscProb::PMNS_Base::fNumNus.

◆ GetDm()

double PMNS_Base::GetDm ( int  j)
virtualinherited

Get the mass-splitting dm_j1 = (m_j^2 - m_1^2) in eV^2

Requires that j>1. Will notify you if input is wrong.

Parameters
j- the index of dm_j1

Definition at line 696 of file PMNS_Base.cxx.

697{
698 if (j < 2 || j > fNumNus) {
699 cerr << "ERROR: Dm" << j << "1 not valid for " << fNumNus
700 << " neutrinos. Returning zero." << endl;
701 return 0;
702 }
703
704 return fDm[j - 1];
705}

References OscProb::PMNS_Base::fDm, and OscProb::PMNS_Base::fNumNus.

◆ GetDmEff()

double PMNS_Base::GetDmEff ( int  j)
virtualinherited

Get the effective mass-splitting dm_j1 in matter in eV^2

Requires that j>1. Will notify you if input is wrong.

Parameters
j- the index of dm_j1

Definition at line 732 of file PMNS_Base.cxx.

733{
734 if (j < 2 || j > fNumNus) {
735 cerr << "ERROR: Dm_" << j << "1 not valid for " << fNumNus
736 << " neutrinos. Returning zero." << endl;
737 return 0;
738 }
739
740 // Solve the Hamiltonian to update eigenvalues
741 SolveHam();
742
743 // Sort eigenvalues in same order as vacuum Dm^2
744 vectorI dm_idx = GetSortedIndices(fDm);
745 vectorD dm_idx_double(dm_idx.begin(), dm_idx.end());
746 dm_idx = GetSortedIndices(dm_idx_double);
748
749 // Return difference in eigenvalues * 2E
750 return (fEval[ev_idx[dm_idx[j - 1]]] - fEval[ev_idx[dm_idx[0]]]) * 2 *
752}
virtual void SolveHam()=0
virtual std::vector< int > GetSortedIndices(const vectorD x)
Get indices that sort a vector.
Definition: PMNS_Base.cxx:715
std::vector< int > vectorI
Definition: Definitions.h:16

References OscProb::PMNS_Base::fDm, OscProb::PMNS_Base::fEnergy, OscProb::PMNS_Base::fEval, OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::GetSortedIndices(), OscProb::PMNS_Base::kGeV2eV, and OscProb::PMNS_Base::SolveHam().

◆ GetEnergy()

double PMNS_Base::GetEnergy ( )
virtualinherited

Get the neutrino energy in GeV.

Definition at line 255 of file PMNS_Base.cxx.

255{ return fEnergy; }

References OscProb::PMNS_Base::fEnergy.

◆ GetIsNuBar()

bool PMNS_Base::GetIsNuBar ( )
virtualinherited

Get the anti-neutrino flag.

Definition at line 261 of file PMNS_Base.cxx.

261{ return fIsNuBar; }

References OscProb::PMNS_Base::fIsNuBar.

◆ GetMassEigenstate()

vectorC PMNS_Base::GetMassEigenstate ( int  mi)
virtualinherited

Get the neutrino mass eigenstate in vacuum

States are:

  0 = m_1, 1 = m_2, 2 = m_3, etc.
Parameters
mi- the mass eigenstate index
Returns
The mass eigenstate

Definition at line 795 of file PMNS_Base.cxx.

796{
797 vectorC oldState = fNuState;
798
799 ResetToFlavour(mi);
800
801 for (int j = 0; j < fNumNus; j++) {
802 for (int i = 0; i < j; i++) { RotateState(i, j); }
803 }
804
805 vectorC newState = fNuState;
806 fNuState = oldState;
807
808 return newState;
809}
virtual void RotateState(int i, int j)
Rotate the neutrino state by theta_ij and delta_ij.
Definition: PMNS_Base.cxx:760

References OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::fNuState, OscProb::PMNS_Base::ResetToFlavour(), and OscProb::PMNS_Base::RotateState().

◆ GetPath()

vector< NuPath > PMNS_Base::GetPath ( )
virtualinherited

Get the vector of neutrino paths.

Definition at line 300 of file PMNS_Base.cxx.

300{ return fNuPaths; }

References OscProb::PMNS_Base::fNuPaths.

◆ GetProbVector()

vectorD PMNS_Base::GetProbVector ( )
protectedvirtualinherited

Return vector of probabilities from final state

Get the vector of probabilities for current state

Returns
Neutrino oscillation probabilities

Definition at line 1233 of file PMNS_Base.cxx.

1234{
1235 vectorD probs(fNumNus);
1236
1237 for (int i = 0; i < probs.size(); i++) { probs[i] = P(i); }
1238
1239 return probs;
1240}

References OscProb::PMNS_Base::fNumNus, and OscProb::PMNS_Base::P().

Referenced by OscProb::PMNS_Base::ProbVector().

◆ GetSamplePoints() [1/3]

vectorD PMNS_Avg::GetSamplePoints ( double  E,
double  cosT,
double  dcosT 
)
protectedvirtual

Compute the sample points for a bin of cosT with width dcosT

Compute the sample points for a bin of cosTheta with width dcosTheta

This is used to increase the average probability over a bin of cosT, calculated with a Taylor expansion

Parameters
E- The neutrino Energy value GeV
cosT- The neutrino cosT value in the bin center
dcosT- The cosT bin width

Definition at line 976 of file PMNS_Avg.cxx.

977{
978 // Set a number of sub-divisions to achieve "good" accuracy
979 // This needs to be studied better
980 int n_div = ceil(35 * pow(E, -0.4) * pow(abs(dcosT / cosT), 0.8) /
981 sqrt(fAvgProbPrec / 1e-4));
982
983 // A vector to store sample points
984 vectorD Samples;
985
986 // Define sub-division width
987 Samples.push_back(dcosT / n_div);
988
989 // Loop over sub-divisions
990 for (int k = 0; k < n_div; k++) {
991 // Define sub-division center
992 double bctr = cosT - dcosT / 2 + (k + 0.5) * dcosT / n_div;
993
994 Samples.push_back(bctr);
995
996 } // End of loop over sub-divisions
997
998 // Return sample points
999 return Samples;
1000}
double fAvgProbPrec
AvgProb precision.
Definition: PMNS_Base.h:305

References OscProb::PMNS_Base::fAvgProbPrec.

◆ GetSamplePoints() [2/3]

matrixC PMNS_Avg::GetSamplePoints ( double  InvE,
double  dInvE,
double  cosT,
double  dcosT 
)
protectedvirtual

Compute the sample points for a bin of E and cosT with width dE and dcosT

Compute the sample points for a bin of 1oE and cosTheta with width d1oE and dcosTheta

This is used to increase the average probability over a bin of L/E and cosT, calculated with a Taylor expansion

Parameters
InvE- The neutrino 1/E value in the bin center in GeV-1
dInvE- The 1/E bin width in GeV-1
cosT- The neutrino cosT value in the bin center
dcosT- The cosT bin width

Definition at line 1015 of file PMNS_Avg.cxx.

1017{
1018 // Set a number of sub-divisions to achieve "good" accuracy
1019 // This needs to be studied better
1020 int n_divCosT = ceil(380 * pow(InvE, 0.5) * pow(abs(dcosT / cosT), 0.8) /
1021 sqrt(fAvgProbPrec / 1e-4));
1022 int n_divE = ceil(260 * pow(dInvE / InvE, 0.8) * pow(InvE, 0.6) /
1023 sqrt(fAvgProbPrec / 1e-4));
1024
1025 // A matrix to store sample points
1026 matrixC Samples = matrixC(n_divE + 1, vectorC(n_divCosT + 1, 0));
1027
1028 // Define sub-division width
1029 Samples[0][0] = complexD(dInvE / n_divE, dcosT / n_divCosT);
1030
1031 // Loop over sub-divisions
1032 for (int k = 0; k < n_divE; k++) {
1033 // Define sub-division center for energy
1034 double bctr_InvE = InvE - dInvE / 2 + (k + 0.5) * dInvE / n_divE;
1035
1036 for (int l = 0; l < n_divCosT; l++) {
1037 // Define sub-division center for angle
1038 double bctr_CosT = cosT - dcosT / 2 + (l + 0.5) * dcosT / n_divCosT;
1039
1040 Samples[k + 1][l + 1] = complexD(bctr_InvE, bctr_CosT);
1041 }
1042
1043 } // End of loop over sub-divisions
1044
1045 // Return sample points
1046 return Samples;
1047}

References OscProb::PMNS_Base::fAvgProbPrec.

◆ GetSamplePoints() [3/3]

vectorD PMNS_Avg::GetSamplePoints ( double  LoE,
double  dLoE 
)
protectedvirtual

Compute the sample points for a bin of L/E with width dLoE

Compute the sample points for a bin of L/E with width dLoE

This is used to increase the average probability over a bin of L/E, calculated with a Taylor expansion

Parameters
LoE- The neutrino L/E value in the bin center in km/GeV
dLoE- The L/E bin width in km/GeV

Reimplemented from OscProb::PMNS_Base.

Definition at line 939 of file PMNS_Avg.cxx.

940{
941 // Set a number of sub-divisions to achieve "good" accuracy
942 // This needs to be studied better
943 int n_div = ceil(3 * pow(dLoE / LoE, 0.8) * pow(LoE, 0.3) /
944 sqrt(fAvgProbPrec / 1e-4));
945
946 // A vector to store sample points
947 vectorD Samples;
948
949 // Define sub-division width
950 Samples.push_back(dLoE / n_div);
951
952 // Loop over sub-divisions
953 for (int k = 0; k < n_div; k++) {
954 // Define sub-division center
955 double bctr = LoE - dLoE / 2 + (k + 0.5) * dLoE / n_div;
956
957 Samples.push_back(bctr);
958
959 } // End of loop over sub-divisions
960
961 // Return sample points
962 return Samples;
963}

References OscProb::PMNS_Base::fAvgProbPrec.

Referenced by AvgProb(), and AvgProbLoE().

◆ GetSortedIndices()

vectorI PMNS_Base::GetSortedIndices ( const vectorD  x)
protectedvirtualinherited

Get the indices of the sorted x vector

Parameters
x- input vector
Returns
The vector of sorted indices

Definition at line 715 of file PMNS_Base.cxx.

716{
717 vectorI idx(x.size(), 0);
718 for (int i = 0; i < x.size(); i++) idx[i] = i;
719 sort(idx.begin(), idx.end(), IdxCompare(x));
720
721 return idx;
722}
An index sorting comparator.
Definition: PMNS_Base.h:312

Referenced by OscProb::PMNS_Base::GetDmEff().

◆ HadamardProduct()

void PMNS_Avg::HadamardProduct ( vectorD  lambda,
double  dbin 
)
protectedvirtual

Apply an Hadamard Product

Apply an Hadamard Product to the density matrix

Parameters
lambda- Eigenvalues of the K matrix
dbin- Width of the bin

Definition at line 908 of file PMNS_Avg.cxx.

909{
911 for (int j = 0; j < fNumNus; j++) {
912 for (int i = 0; i < j; i++) {
913 double arg = (lambda[i] - lambda[j]) * dbin;
914 sinc[i][j] = sin(arg) / arg;
915
916 sinc[j][i] = sinc[i][j];
917 }
918 }
919
920 for (int i = 0; i < fNumNus; i++) { sinc[i][i] = 1; }
921
922 for (int j = 0; j < fNumNus; j++) {
923 for (int i = 0; i < fNumNus; i++) {
924 fdensityMatrix[i][j] = fdensityMatrix[i][j] * sinc[i][j];
925 }
926 }
927}

References fdensityMatrix, and OscProb::PMNS_Base::fNumNus.

Referenced by AlgorithmDensityMatrix().

◆ InitializeTaylorsVectors()

void PMNS_Avg::InitializeTaylorsVectors ( )
protectedvirtual

Initialize all member vectors with zeros

Set vector sizes and initialize elements to zero. Initialize diagonal elements of S to one

Definition at line 48 of file PMNS_Avg.cxx.

49{
51
54
57
59
63
64 for (int i = 0; i < fNumNus; i++) {
65 fevolutionMatrixS[i][i] = 1;
66
67 for (int j = 0; j < fNumNus; j++) {
68 fKInvE[i][j] = 0;
69 fKcosT[i][j] = 0;
70 }
71 }
72
73 fLayer = fPrem.GetPremLayers().size() - 1;
74
75 fdl = -1;
76
78}
matrixC fSflavor
S matrix for one layer.
Definition: PMNS_Avg.h:176
virtual double GetDetRadius()
Definition: PremModel.cxx:429
virtual std::vector< PremLayer > GetPremLayers()
Definition: PremModel.cxx:145

References fdensityMatrix, fDetRadius, fdl, fevolutionMatrixS, fKcosT, fKflavor, fKInvE, fKmass, flambdaCosT, flambdaInvE, fLayer, OscProb::PMNS_Base::fNumNus, fPrem, fSflavor, fVcosT, fVInvE, OscProb::PremModel::GetDetRadius(), and OscProb::PremModel::GetPremLayers().

Referenced by AvgAlgo(), AvgAlgoCosT(), ExtrapolationProb(), ExtrapolationProbCosT(), ExtrapolationProbLoE(), and PMNS_Avg().

◆ InitializeVectors()

void PMNS_Base::InitializeVectors ( )
protectedvirtualinherited

Initialize all member vectors with zeros

Set vector sizes and initialize elements to zero.

Definition at line 79 of file PMNS_Base.cxx.

80{
81 fDm = vectorD(fNumNus, 0);
84
87
90
91 fEval = vectorD(fNumNus, 0);
93}
static const complexD zero
zero in complex
Definition: PMNS_Base.h:211
vectorC fBuffer
Buffer for neutrino state tranformations.
Definition: PMNS_Base.h:287
vectorC fPhases
Buffer for oscillation phases.
Definition: PMNS_Base.h:286

Referenced by OscProb::PMNS_Base::PMNS_Base().

◆ LnDerivative()

double PMNS_Avg::LnDerivative ( )
protectedvirtual

Compute the derivation of one layer's length

Compute the derivation of one layer's length depending on the angle

Definition at line 199 of file PMNS_Avg.cxx.

200{
201 double dL = 0;
202
203 double L1 = pow(fPrem.GetPremLayers()[fLayer].radius, 2) - fminRsq;
204
205 double L2 = -fminRsq;
206 if (fLayer > 0) L2 += pow(fPrem.GetPremLayers()[fLayer - 1].radius, 2);
207
208 bool ismin = (L2 <= 0 && fcosT < 0);
209
210 if (ismin)
211 dL = 2 * pow(fDetRadius, 2) * fcosT * pow(L1, -0.5);
212 else
213 dL = pow(fDetRadius, 2) * fcosT * (pow(L1, -0.5) - pow(L2, -0.5));
214
215 if (ismin) fdl = 1;
216
217 fLayer += fdl;
218
219 return dL;
220}
double fcosT
Cosine of neutrino angle.
Definition: PMNS_Avg.h:187

References fcosT, fDetRadius, fdl, fLayer, fminRsq, fPrem, and OscProb::PremModel::GetPremLayers().

Referenced by BuildKcosT().

◆ MultiplicationRuleK()

void PMNS_Avg::MultiplicationRuleK ( complexD  K[3][3])
protectedvirtual

Product between two K matrices.

This is used to calculate the matrix K corresponding to the propagation between the beginning of the path and the end of the current layer.

The matrix fKflavor correspond to the propagation between the beginning and the end of the layer.

Parameters
K- The K matrix corresponding to the propagation between the beginning of the path and the beginning of the current layer

Definition at line 316 of file PMNS_Avg.cxx.

317{
318 for (int i = 0; i < fNumNus; i++) {
319 complexD buffer[3];
320
321 for (int l = 0; l < fNumNus; l++) {
322 for (int k = 0; k < fNumNus; k++) {
323 buffer[l] += conj(fevolutionMatrixS[k][i]) * fKflavor[k][l];
324 }
325 }
326
327 for (int j = 0; j <= i; j++) {
328 for (int l = 0; l < fNumNus; l++) {
329 K[i][j] += buffer[l] * fevolutionMatrixS[l][j];
330 }
331
332 if (i != j) { K[j][i] = conj(K[i][j]); }
333 }
334 }
335}

References fevolutionMatrixS, fKflavor, and OscProb::PMNS_Base::fNumNus.

Referenced by PropagatePathTaylor().

◆ MultiplicationRuleS()

void PMNS_Avg::MultiplicationRuleS ( )
protectedvirtual

Product between two S matrices.

This is used to calculate the matrix S corresponding to the propagation between the beginning of the path and the end of the current layer.

The matrix fevolutionMatrixS represent the propagation between the beginning of the path and the beginning of the current layer. This matrix is updated after every layer with this function. The matrix fSflavor represent the propagation between the beginning and the end of the layer.

Definition at line 285 of file PMNS_Avg.cxx.

286{
287 complexD save[3];
288
289 for (int j = 0; j < fNumNus; j++) {
290 for (int n = 0; n < fNumNus; n++) { save[n] = fevolutionMatrixS[n][j]; }
291
292 for (int i = 0; i < fNumNus; i++) {
293 fevolutionMatrixS[i][j] = 0;
294
295 for (int k = 0; k < fNumNus; k++) {
296 fevolutionMatrixS[i][j] += fSflavor[i][k] * save[k];
297 }
298 }
299 }
300}

References fevolutionMatrixS, OscProb::PMNS_Base::fNumNus, and fSflavor.

Referenced by PropagatePathTaylor().

◆ P()

double PMNS_Base::P ( int  flv)
protectedvirtualinherited

Compute oscillation probability of flavour flv from current state

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flv- The neutrino final flavour.
Returns
Neutrino oscillation probability

Reimplemented in OscProb::PMNS_DensityMatrix.

Definition at line 1058 of file PMNS_Base.cxx.

1059{
1060 assert(flv >= 0 && flv < fNumNus);
1061 return norm(fNuState[flv]);
1062}

References OscProb::PMNS_Base::fNumNus, and OscProb::PMNS_Base::fNuState.

Referenced by AvgFormula(), AvgFormulaExtrapolation(), OscProb::PMNS_Base::GetProbVector(), and OscProb::PMNS_Base::Prob().

◆ Prob() [1/6]

double PMNS_Base::Prob ( int  flvi,
int  flvf 
)
virtualinherited

Compute the probability of flvi going to flvf.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
Returns
Neutrino oscillation probability

Definition at line 1091 of file PMNS_Base.cxx.

1092{
1093 ResetToFlavour(flvi);
1094
1095 Propagate();
1096
1097 return P(flvf);
1098}
virtual void Propagate()
Propagate neutrino through full path.
Definition: PMNS_Base.cxx:1018

References OscProb::PMNS_Base::P(), OscProb::PMNS_Base::Propagate(), and OscProb::PMNS_Base::ResetToFlavour().

◆ Prob() [2/6]

double PMNS_Base::Prob ( int  flvi,
int  flvf,
double  E 
)
virtualinherited

Compute the probability of flvi going to flvf for energy E

Compute the probability of flvi going to flvf for a given energy in GeV.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
E- The neutrino energy in GeV
Returns
Neutrino oscillation probability

Definition at line 1160 of file PMNS_Base.cxx.

1161{
1162 SetEnergy(E);
1163
1164 return Prob(flvi, flvf);
1165}

References OscProb::PMNS_Base::Prob(), and OscProb::PMNS_Base::SetEnergy().

◆ Prob() [3/6]

double PMNS_Base::Prob ( int  flvi,
int  flvf,
double  E,
double  L 
)
virtualinherited

Compute the probability of flvi going to flvf for energy E and distance L

Compute the probability of flvi going to flvf for a given energy in GeV and distance in km in a single path.

If the path sequence is not a single path, a new single path will be created and the previous sequence will be lost.

Don't use this if you want to propagate over multiple path segments.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
flvf- The neutrino final flavour.
E- The neutrino energy in GeV
L- The neutrino path length in km
Returns
Neutrino oscillation probability

Definition at line 1219 of file PMNS_Base.cxx.

1220{
1221 SetEnergy(E);
1222 SetLength(L);
1223
1224 return Prob(flvi, flvf);
1225}
virtual void SetLength(double L)
Set a single path lentgh in km.
Definition: PMNS_Base.cxx:391

References OscProb::PMNS_Base::Prob(), OscProb::PMNS_Base::SetEnergy(), and OscProb::PMNS_Base::SetLength().

◆ Prob() [4/6]

double PMNS_Base::Prob ( vectorC  nu_in,
int  flvf 
)
virtualinherited

Compute the probability of nu_in going to flvf.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
nu_in- The neutrino initial state in flavour basis.
flvf- The neutrino final flavour.
Returns
Neutrino oscillation probability

Definition at line 1114 of file PMNS_Base.cxx.

1115{
1116 SetPureState(nu_in);
1117
1118 Propagate();
1119
1120 return P(flvf);
1121}
virtual void SetPureState(vectorC nu_in)
Set the initial state from a pure state.
Definition: PMNS_Base.cxx:1070

References OscProb::PMNS_Base::P(), OscProb::PMNS_Base::Propagate(), and OscProb::PMNS_Base::SetPureState().

Referenced by AvgProb(), OscProb::PMNS_Base::AvgProb(), AvgProbLoE(), OscProb::PMNS_Base::AvgProbLoE(), and OscProb::PMNS_Base::Prob().

◆ Prob() [5/6]

double PMNS_Base::Prob ( vectorC  nu_in,
int  flvf,
double  E 
)
virtualinherited

Compute the probability of nu_in going to flvf for energy E

Compute the probability of nu_in going to flvf for a given energy in GeV.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
nu_in- The neutrino initial state in flavour basis.
flvf- The neutrino final flavour.
E- The neutrino energy in GeV
Returns
Neutrino oscillation probability

Definition at line 1138 of file PMNS_Base.cxx.

1139{
1140 SetEnergy(E);
1141
1142 return Prob(nu_in, flvf);
1143}

References OscProb::PMNS_Base::Prob(), and OscProb::PMNS_Base::SetEnergy().

◆ Prob() [6/6]

double PMNS_Base::Prob ( vectorC  nu_in,
int  flvf,
double  E,
double  L 
)
virtualinherited

Compute the probability of nu_in going to flvf for energy E and distance L

Compute the probability of nu_in going to flvf for a given energy in GeV and distance in km in a single path.

If the path sequence is not a single path, a new single path will be created and the previous sequence will be lost.

Don't use this if you want to propagate over multiple path segments.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
nu_in- The neutrino initial state in flavour basis.
flvf- The neutrino final flavour.
E- The neutrino energy in GeV
L- The neutrino path length in km
Returns
Neutrino oscillation probability

Definition at line 1189 of file PMNS_Base.cxx.

1190{
1191 SetEnergy(E);
1192 SetLength(L);
1193
1194 return Prob(nu_in, flvf);
1195}

References OscProb::PMNS_Base::Prob(), OscProb::PMNS_Base::SetEnergy(), and OscProb::PMNS_Base::SetLength().

◆ ProbMatrix() [1/3]

matrixD PMNS_Base::ProbMatrix ( int  nflvi,
int  nflvf 
)
virtualinherited

Compute the probability matrix for the first nflvi and nflvf states.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
nflvi- The number of initial flavours in the matrix.
nflvf- The number of final flavours in the matrix.
Returns
Neutrino oscillation probabilities

Reimplemented in OscProb::PMNS_DensityMatrix, OscProb::PMNS_DensityMatrix, OscProb::PMNS_NUNM, and OscProb::PMNS_OQS.

Definition at line 1387 of file PMNS_Base.cxx.

1388{
1389 assert(nflvi <= fNumNus && nflvi >= 0);
1390 assert(nflvf <= fNumNus && nflvf >= 0);
1391
1392 // Output probabilities
1393 matrixD probs(nflvi, vectorD(nflvf));
1394
1395 // List of states
1396 matrixC allstates(nflvi, vectorC(fNumNus));
1397
1398 // Reset all initial states
1399 for (int i = 0; i < nflvi; i++) {
1400 ResetToFlavour(i);
1401 allstates[i] = fNuState;
1402 }
1403
1404 // Propagate all states in parallel
1405 for (int i = 0; i < int(fNuPaths.size()); i++) {
1406 for (int flvi = 0; flvi < nflvi; flvi++) {
1407 fNuState = allstates[flvi];
1409 allstates[flvi] = fNuState;
1410 }
1411 }
1412
1413 // Get all probabilities
1414 for (int flvi = 0; flvi < nflvi; flvi++) {
1415 for (int flvj = 0; flvj < nflvf; flvj++) {
1416 probs[flvi][flvj] = norm(allstates[flvi][flvj]);
1417 }
1418 }
1419
1420 return probs;
1421}
virtual void PropagatePath(NuPath p)
Propagate neutrino through a single path.
Definition: PMNS_Base.cxx:983

References OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::fNuPaths, OscProb::PMNS_Base::fNuState, OscProb::PMNS_Base::PropagatePath(), and OscProb::PMNS_Base::ResetToFlavour().

Referenced by OscProb::PMNS_Base::AvgProbMatrix(), OscProb::PMNS_Base::AvgProbMatrixLoE(), and OscProb::PMNS_Base::ProbMatrix().

◆ ProbMatrix() [2/3]

matrixD PMNS_Base::ProbMatrix ( int  nflvi,
int  nflvf,
double  E 
)
virtualinherited

Compute the probability matrix for the first nflvi and nflvf states for a given energy in GeV.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
nflvi- The number of initial flavours in the matrix.
nflvf- The number of final flavours in the matrix.
E- The neutrino energy in GeV
Returns
Neutrino oscillation probabilities

Reimplemented in OscProb::PMNS_DensityMatrix.

Definition at line 1439 of file PMNS_Base.cxx.

1440{
1441 SetEnergy(E);
1442
1443 return ProbMatrix(nflvi, nflvf);
1444}

References OscProb::PMNS_Base::ProbMatrix(), and OscProb::PMNS_Base::SetEnergy().

◆ ProbMatrix() [3/3]

matrixD PMNS_Base::ProbMatrix ( int  nflvi,
int  nflvf,
double  E,
double  L 
)
virtualinherited

Compute the probability matrix for energy E and distance L

Compute the probability matrix for the first nflvi and nflvf states for a given energy in GeV and distance in km in a single path.

If the path sequence is not a single path, a new single path will be created and the previous sequence will be lost.

Don't use this if you want to propagate over multiple path segments.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
nflvi- The number of initial flavours in the matrix.
nflvf- The number of final flavours in the matrix.
E- The neutrino energy in GeV
L- The neutrino path length in km
Returns
Neutrino oscillation probabilities

Reimplemented in OscProb::PMNS_DensityMatrix.

Definition at line 1468 of file PMNS_Base.cxx.

1469{
1470 SetEnergy(E);
1471 SetLength(L);
1472
1473 return ProbMatrix(nflvi, nflvf);
1474}

References OscProb::PMNS_Base::ProbMatrix(), OscProb::PMNS_Base::SetEnergy(), and OscProb::PMNS_Base::SetLength().

◆ ProbVector() [1/6]

vectorD PMNS_Base::ProbVector ( int  flvi)
virtualinherited

Compute the probabilities of flvi going to all flavours

Compute the probability of flvi going to all flavours.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
Returns
Neutrino oscillation probabilities

Definition at line 1272 of file PMNS_Base.cxx.

1273{
1274 ResetToFlavour(flvi);
1275
1276 Propagate();
1277
1278 return GetProbVector();
1279}
virtual vectorD GetProbVector()
Definition: PMNS_Base.cxx:1233

References OscProb::PMNS_Base::GetProbVector(), OscProb::PMNS_Base::Propagate(), and OscProb::PMNS_Base::ResetToFlavour().

◆ ProbVector() [2/6]

vectorD PMNS_Base::ProbVector ( int  flvi,
double  E 
)
virtualinherited

Compute the probabilities of flvi going to all flavours for energy E

Compute the probability of flvi going to all flavours for a given energy in GeV.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
E- The neutrino energy in GeV
Returns
Neutrino oscillation probability

Definition at line 1313 of file PMNS_Base.cxx.

1314{
1315 SetEnergy(E);
1316
1317 return ProbVector(flvi);
1318}

References OscProb::PMNS_Base::ProbVector(), and OscProb::PMNS_Base::SetEnergy().

◆ ProbVector() [3/6]

vectorD PMNS_Base::ProbVector ( int  flvi,
double  E,
double  L 
)
virtualinherited

Compute the probabilities of flvi going to all flavours for energy E and distance L

Compute the probability of flvi going to all flavours for a given energy in GeV and distance in km in a single path.

If the path sequence is not a single path, a new single path will be created and the previous sequence will be lost.

Don't use this if you want to propagate over multiple path segments.

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flvi- The neutrino starting flavour.
E- The neutrino energy in GeV
L- The neutrino path length in km
Returns
Neutrino oscillation probability

Definition at line 1365 of file PMNS_Base.cxx.

1366{
1367 SetEnergy(E);
1368 SetLength(L);
1369
1370 return ProbVector(flvi);
1371}

References OscProb::PMNS_Base::ProbVector(), OscProb::PMNS_Base::SetEnergy(), and OscProb::PMNS_Base::SetLength().

◆ ProbVector() [4/6]

vectorD PMNS_Base::ProbVector ( vectorC  nu_in)
virtualinherited

Compute the probabilities of nu_in going to all flavours

Compute the probability of nu_in going to all flavours.

Parameters
nu_in- The neutrino initial state in flavour basis.
Returns
Neutrino oscillation probabilities

Definition at line 1250 of file PMNS_Base.cxx.

1251{
1252 SetPureState(nu_in);
1253
1254 Propagate();
1255
1256 return GetProbVector();
1257}

References OscProb::PMNS_Base::GetProbVector(), OscProb::PMNS_Base::Propagate(), and OscProb::PMNS_Base::SetPureState().

Referenced by OscProb::PMNS_Base::AvgProbVector(), OscProb::PMNS_Base::AvgProbVectorLoE(), and OscProb::PMNS_Base::ProbVector().

◆ ProbVector() [5/6]

vectorD PMNS_Base::ProbVector ( vectorC  nu_in,
double  E 
)
virtualinherited

Compute the probabilities of nu_in going to all

Compute the probability of nu_in going to all flavours for a given energy in GeV.

Parameters
nu_in- The neutrino initial state in flavour basis.
E- The neutrino energy in GeV
Returns
Neutrino oscillation probabilities

Definition at line 1291 of file PMNS_Base.cxx.

1292{
1293 SetEnergy(E);
1294
1295 return ProbVector(nu_in);
1296}

References OscProb::PMNS_Base::ProbVector(), and OscProb::PMNS_Base::SetEnergy().

◆ ProbVector() [6/6]

vectorD PMNS_Base::ProbVector ( vectorC  nu_in,
double  E,
double  L 
)
virtualinherited

Compute the probabilities of nu_in going to all flavours for energy E and distance L

Compute the probability of nu_in going to all flavours for a given energy in GeV and distance in km in a single path.

If the path sequence is not a single path, a new single path will be created and the previous sequence will be lost.

Don't use this if you want to propagate over multiple path segments.

Parameters
nu_in- The neutrino initial state in flavour basis.
E- The neutrino energy in GeV
L- The neutrino path length in km
Returns
Neutrino oscillation probabilities

Definition at line 1336 of file PMNS_Base.cxx.

1337{
1338 SetEnergy(E);
1339 SetLength(L);
1340
1341 return ProbVector(nu_in);
1342}

References OscProb::PMNS_Base::ProbVector(), OscProb::PMNS_Base::SetEnergy(), and OscProb::PMNS_Base::SetLength().

◆ Propagate()

void PMNS_Base::Propagate ( )
protectedvirtualinherited

Propagate neutrino state through full path

Reimplemented in OscProb::PMNS_NUNM, and OscProb::PMNS_OQS.

Definition at line 1018 of file PMNS_Base.cxx.

1019{
1020 for (int i = 0; i < int(fNuPaths.size()); i++) { PropagatePath(fNuPaths[i]); }
1021}

References OscProb::PMNS_Base::fNuPaths, and OscProb::PMNS_Base::PropagatePath().

Referenced by OscProb::PMNS_Base::Prob(), OscProb::PMNS_Base::ProbVector(), OscProb::PMNS_NUNM::Propagate(), and OscProb::PMNS_OQS::Propagate().

◆ PropagatePath()

void PMNS_Base::PropagatePath ( NuPath  p)
protectedvirtualinherited

Propagate the current neutrino state through a given path

Parameters
p- A neutrino path segment

Reimplemented in OscProb::PMNS_Decay, OscProb::PMNS_Deco, OscProb::PMNS_Iter, OscProb::PMNS_NUNM, OscProb::PMNS_OQS, and OscProb::PMNS_DensityMatrix.

Definition at line 983 of file PMNS_Base.cxx.

984{
985 // Set the neutrino path
986 SetCurPath(p);
987
988 // Solve for eigensystem
989 SolveHam();
990
991 double LengthIneV = kKm2eV * p.length;
992 for (int i = 0; i < fNumNus; i++) {
993 double arg = fEval[i] * LengthIneV;
994 fPhases[i] = complexD(cos(arg), -sin(arg));
995 }
996
997 for (int i = 0; i < fNumNus; i++) {
998 fBuffer[i] = 0;
999 for (int j = 0; j < fNumNus; j++) {
1000 fBuffer[i] += conj(fEvec[j][i]) * fNuState[j];
1001 }
1002 fBuffer[i] *= fPhases[i];
1003 }
1004
1005 // Propagate neutrino state
1006 for (int i = 0; i < fNumNus; i++) {
1007 fNuState[i] = 0;
1008 for (int j = 0; j < fNumNus; j++) {
1009 fNuState[i] += fEvec[i][j] * fBuffer[j];
1010 }
1011 }
1012}

References OscProb::PMNS_Base::fBuffer, OscProb::PMNS_Base::fEval, OscProb::PMNS_Base::fEvec, OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::fNuState, OscProb::PMNS_Base::fPhases, OscProb::PMNS_Base::kKm2eV, OscProb::NuPath::length, OscProb::PMNS_Base::SetCurPath(), and OscProb::PMNS_Base::SolveHam().

Referenced by OscProb::PMNS_Base::ProbMatrix(), OscProb::PMNS_Base::Propagate(), OscProb::PMNS_Iter::PropagatePath(), and OscProb::PMNS_NUNM::PropagatePath().

◆ PropagatePathTaylor()

void PMNS_Avg::PropagatePathTaylor ( NuPath  p)
protectedvirtual

Propagate the current neutrino state through a given path

Parameters
p- A neutrino path segment

Definition at line 353 of file PMNS_Avg.cxx.

354{
355 // Set the neutrino path
356 SetCurPath(p);
357
358 // Solve for eigensystem
359 SolveHam();
360
361 // Get the evolution matrix in mass basis
362 double LengthIneV = kKm2eV * p.length;
363 for (int i = 0; i < fNumNus; i++) {
364 double arg = fEval[i] * LengthIneV;
365 fPhases[i] = complexD(cos(arg), -sin(arg));
366 }
367
368 // Rotate S in flavor basis
369 rotateS();
370
371 // if avg on E
372 if (fdInvE != 0) {
373 // Build KE in mass basis
374 BuildKE(p.length);
375
376 // Rotate KE in flavor basis
377 rotateK();
378
379 // Multiply this layer K's with the previous path K's
381 }
382
383 // if avg on cosT
384 if (fdcosT != 0) {
385 // Build KcosT in mass basis
387
388 // Multiply this layer K's with the previous path K's
390 }
391
392 // Multiply this layer S's with the previous path S's
394}
virtual void rotateS()
Rotate the S matrix.
Definition: PMNS_Avg.cxx:226
virtual void BuildKE(double L)
build K matrix for the inverse of energy in mass basis
Definition: PMNS_Avg.cxx:122
virtual void rotateK()
Rotate one K matrix.
Definition: PMNS_Avg.cxx:248
virtual void MultiplicationRuleK(complexD K[3][3])
Product between two K matrices.
Definition: PMNS_Avg.cxx:316
virtual void MultiplicationRuleS()
Product between two S matrices.
Definition: PMNS_Avg.cxx:285
virtual void BuildKcosT(double L)
build K matrix for angle in flavor basis
Definition: PMNS_Avg.cxx:180
virtual void SolveHam()
Solve the full Hamiltonian for eigenvectors and eigenvalues.
Definition: PMNS_Fast.cxx:98

References BuildKcosT(), BuildKE(), fdcosT, fdInvE, OscProb::PMNS_Base::fEval, fKcosT, fKInvE, OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::fPhases, OscProb::PMNS_Base::kKm2eV, OscProb::NuPath::length, MultiplicationRuleK(), MultiplicationRuleS(), rotateK(), rotateS(), OscProb::PMNS_Base::SetCurPath(), and OscProb::PMNS_Fast::SolveHam().

Referenced by PropagateTaylor().

◆ PropagateTaylor()

void PMNS_Avg::PropagateTaylor ( )
protectedvirtual

Propagate neutrino state through full path

Definition at line 341 of file PMNS_Avg.cxx.

342{
343 for (int i = 0; i < int(fNuPaths.size()); i++) {
345 }
346}
virtual void PropagatePathTaylor(NuPath p)
Propagate neutrino through a single path.
Definition: PMNS_Avg.cxx:353

References OscProb::PMNS_Base::fNuPaths, and PropagatePathTaylor().

Referenced by AvgAlgo(), AvgAlgoCosT(), ExtrapolationProb(), ExtrapolationProbCosT(), and ExtrapolationProbLoE().

◆ ResetToFlavour()

void PMNS_Base::ResetToFlavour ( int  flv)
protectedvirtualinherited

Reset the neutrino state back to a pure flavour where it starts

Flavours are:

  0 = nue, 1 = numu, 2 = nutau
  3 = sterile_1, 4 = sterile_2, etc.
Parameters
flv- The neutrino starting flavour.

Reimplemented in OscProb::PMNS_DensityMatrix.

Definition at line 1034 of file PMNS_Base.cxx.

1035{
1036 assert(flv >= 0 && flv < fNumNus);
1037 for (int i = 0; i < fNumNus; ++i) {
1038 if (i == flv)
1039 fNuState[i] = one;
1040 else
1041 fNuState[i] = zero;
1042 }
1043}
static const complexD one
one in complex
Definition: PMNS_Base.h:212

References OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::fNuState, OscProb::PMNS_Base::one, and OscProb::PMNS_Base::zero.

Referenced by OscProb::PMNS_Base::AvgProb(), OscProb::PMNS_Base::AvgProbLoE(), OscProb::PMNS_Base::AvgProbVector(), OscProb::PMNS_Base::AvgProbVectorLoE(), OscProb::PMNS_Base::GetMassEigenstate(), OscProb::PMNS_Base::PMNS_Base(), OscProb::PMNS_Base::Prob(), OscProb::PMNS_Base::ProbMatrix(), OscProb::PMNS_NUNM::ProbMatrix(), OscProb::PMNS_Base::ProbVector(), and OscProb::PMNS_DensityMatrix::ResetToFlavour().

◆ RotateDensityM()

void PMNS_Avg::RotateDensityM ( bool  to_basis,
matrixC  V 
)
protectedvirtual

Apply rotation to the density matrix from or to the basis where V is diagonal

Parameters
to_basis- Rotation from (false) or to (true)
V- The matrix used for the denisty matrix rotation.

Definition at line 872 of file PMNS_Avg.cxx.

873{
874 matrixC Buffer = matrixC(fNumNus, vectorC(fNumNus, 0));
875
876 for (int i = 0; i < fNumNus; i++) {
877 for (int j = 0; j < fNumNus; j++) {
878 for (int k = 0; k < fNumNus; k++) {
879 if (to_basis)
880 Buffer[i][j] += fdensityMatrix[i][k] * V[k][j];
881 else
882 Buffer[i][j] += fdensityMatrix[i][k] * conj(V[j][k]);
883 }
884 }
885 }
886
887 for (int i = 0; i < fNumNus; i++) {
888 for (int j = i; j < fNumNus; j++) {
889 fdensityMatrix[i][j] = 0;
890 for (int k = 0; k < fNumNus; k++) {
891 if (to_basis)
892 fdensityMatrix[i][j] += conj(V[k][i]) * Buffer[k][j];
893 else
894 fdensityMatrix[i][j] += V[i][k] * Buffer[k][j];
895 }
896 if (j > i) fdensityMatrix[j][i] = conj(fdensityMatrix[i][j]);
897 }
898 }
899}

References fdensityMatrix, and OscProb::PMNS_Base::fNumNus.

Referenced by AlgorithmDensityMatrix().

◆ RotateH()

void PMNS_Base::RotateH ( int  i,
int  j,
matrixC Ham 
)
protectedvirtualinherited

Rotate the Hamiltonian by the angle theta_ij and phase delta_ij.

The rotations assume all off-diagonal elements with i > j are zero. This is correct if the order of rotations is chosen appropriately and it speeds up computation by skipping null terms

Parameters
i,j- the indices of the rotation ij
Ham- the Hamiltonian to be rotated

Definition at line 822 of file PMNS_Base.cxx.

823{
824 // Do nothing if angle is zero
825 if (fTheta[i][j] == 0) return;
826
827 double fSinBuffer = sin(fTheta[i][j]);
828 double fCosBuffer = cos(fTheta[i][j]);
829
830 double fHmsBufferD;
831 complexD fHmsBufferC;
832
833 // With Delta
834 if (i + 1 < j) {
835 complexD fExpBuffer = complexD(cos(fDelta[i][j]), -sin(fDelta[i][j]));
836
837 // General case
838 if (i > 0) {
839 // Top columns
840 for (int k = 0; k < i; k++) {
841 fHmsBufferC = Ham[k][i];
842
843 Ham[k][i] *= fCosBuffer;
844 Ham[k][i] += Ham[k][j] * fSinBuffer * conj(fExpBuffer);
845
846 Ham[k][j] *= fCosBuffer;
847 Ham[k][j] -= fHmsBufferC * fSinBuffer * fExpBuffer;
848 }
849
850 // Middle row and column
851 for (int k = i + 1; k < j; k++) {
852 fHmsBufferC = Ham[k][j];
853
854 Ham[k][j] *= fCosBuffer;
855 Ham[k][j] -= conj(Ham[i][k]) * fSinBuffer * fExpBuffer;
856
857 Ham[i][k] *= fCosBuffer;
858 Ham[i][k] += fSinBuffer * fExpBuffer * conj(fHmsBufferC);
859 }
860
861 // Nodes ij
862 fHmsBufferC = Ham[i][i];
863 fHmsBufferD = real(Ham[j][j]);
864
865 Ham[i][i] *= fCosBuffer * fCosBuffer;
866 Ham[i][i] +=
867 2 * fSinBuffer * fCosBuffer * real(Ham[i][j] * conj(fExpBuffer));
868 Ham[i][i] += fSinBuffer * Ham[j][j] * fSinBuffer;
869
870 Ham[j][j] *= fCosBuffer * fCosBuffer;
871 Ham[j][j] += fSinBuffer * fHmsBufferC * fSinBuffer;
872 Ham[j][j] -=
873 2 * fSinBuffer * fCosBuffer * real(Ham[i][j] * conj(fExpBuffer));
874
875 Ham[i][j] -= 2 * fSinBuffer * real(Ham[i][j] * conj(fExpBuffer)) *
876 fSinBuffer * fExpBuffer;
877 Ham[i][j] +=
878 fSinBuffer * fCosBuffer * (fHmsBufferD - fHmsBufferC) * fExpBuffer;
879 }
880 // First rotation on j (No top columns)
881 else {
882 // Middle rows and columns
883 for (int k = i + 1; k < j; k++) {
884 Ham[k][j] = -conj(Ham[i][k]) * fSinBuffer * fExpBuffer;
885
886 Ham[i][k] *= fCosBuffer;
887 }
888
889 // Nodes ij
890 fHmsBufferD = real(Ham[i][i]);
891
892 Ham[i][j] =
893 fSinBuffer * fCosBuffer * (Ham[j][j] - fHmsBufferD) * fExpBuffer;
894
895 Ham[i][i] *= fCosBuffer * fCosBuffer;
896 Ham[i][i] += fSinBuffer * Ham[j][j] * fSinBuffer;
897
898 Ham[j][j] *= fCosBuffer * fCosBuffer;
899 Ham[j][j] += fSinBuffer * fHmsBufferD * fSinBuffer;
900 }
901 }
902 // Without Delta (No middle rows or columns: j = i+1)
903 else {
904 // General case
905 if (i > 0) {
906 // Top columns
907 for (int k = 0; k < i; k++) {
908 fHmsBufferC = Ham[k][i];
909
910 Ham[k][i] *= fCosBuffer;
911 Ham[k][i] += Ham[k][j] * fSinBuffer;
912
913 Ham[k][j] *= fCosBuffer;
914 Ham[k][j] -= fHmsBufferC * fSinBuffer;
915 }
916
917 // Nodes ij
918 fHmsBufferC = Ham[i][i];
919 fHmsBufferD = real(Ham[j][j]);
920
921 Ham[i][i] *= fCosBuffer * fCosBuffer;
922 Ham[i][i] += 2 * fSinBuffer * fCosBuffer * real(Ham[i][j]);
923 Ham[i][i] += fSinBuffer * Ham[j][j] * fSinBuffer;
924
925 Ham[j][j] *= fCosBuffer * fCosBuffer;
926 Ham[j][j] += fSinBuffer * fHmsBufferC * fSinBuffer;
927 Ham[j][j] -= 2 * fSinBuffer * fCosBuffer * real(Ham[i][j]);
928
929 Ham[i][j] -= 2 * fSinBuffer * real(Ham[i][j]) * fSinBuffer;
930 Ham[i][j] += fSinBuffer * fCosBuffer * (fHmsBufferD - fHmsBufferC);
931 }
932 // First rotation (theta12)
933 else {
934 Ham[i][j] = fSinBuffer * fCosBuffer * Ham[j][j];
935
936 Ham[i][i] = fSinBuffer * Ham[j][j] * fSinBuffer;
937
938 Ham[j][j] *= fCosBuffer * fCosBuffer;
939 }
940 }
941}

References OscProb::PMNS_Base::fDelta, and OscProb::PMNS_Base::fTheta.

Referenced by OscProb::PMNS_Base::BuildHms(), OscProb::PMNS_Decay::BuildHms(), and OscProb::PMNS_SNSI::BuildHms().

◆ rotateK()

void PMNS_Avg::rotateK ( )
protectedvirtual

Rotate the K matrix from mass to flavor basis

Definition at line 248 of file PMNS_Avg.cxx.

249{
250 complexD buffer[3];
251
252 for (int j = 0; j < fNumNus; j++) {
253 for (int k = 0; k < fNumNus; k++) {
254 buffer[k] = 0;
255
256 for (int l = 0; l < fNumNus; l++) {
257 buffer[k] += fKmass[k][l] * conj(fEvec[j][l]);
258 }
259 }
260
261 for (int i = 0; i <= j; i++) {
262 fKflavor[i][j] = 0;
263
264 for (int k = 0; k < fNumNus; k++) {
265 fKflavor[i][j] += fEvec[i][k] * buffer[k];
266 }
267
268 if (i != j) { fKflavor[j][i] = conj(fKflavor[i][j]); }
269 }
270 }
271}

References OscProb::PMNS_Base::fEvec, fKflavor, fKmass, and OscProb::PMNS_Base::fNumNus.

Referenced by PropagatePathTaylor().

◆ rotateS()

void PMNS_Avg::rotateS ( )
protectedvirtual

Rotate the S matrix for the current layer from mass to flavor basis

Definition at line 226 of file PMNS_Avg.cxx.

227{
228 complexD buffer[3];
229
230 for (int j = 0; j < fNumNus; j++) {
231 for (int k = 0; k < fNumNus; k++) {
232 buffer[k] = fPhases[k] * conj(fEvec[j][k]);
233 }
234
235 for (int i = 0; i < fNumNus; i++) {
236 fSflavor[i][j] = 0;
237 for (int k = 0; k < fNumNus; k++) {
238 fSflavor[i][j] += fEvec[i][k] * buffer[k];
239 }
240 }
241 }
242}

References OscProb::PMNS_Base::fEvec, OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::fPhases, and fSflavor.

Referenced by PropagatePathTaylor().

◆ RotateState()

void PMNS_Base::RotateState ( int  i,
int  j 
)
protectedvirtualinherited

Rotate the neutrino state by the angle theta_ij and phase delta_ij.

Parameters
i,j- the indices of the rotation ij

Definition at line 760 of file PMNS_Base.cxx.

761{
762 // Do nothing if angle is zero
763 if (fTheta[i][j] == 0) return;
764
765 double sij = sin(fTheta[i][j]);
766 double cij = cos(fTheta[i][j]);
767
768 complexD buffer;
769
770 if (i + 1 == j || fDelta[i][j] == 0) {
771 buffer = cij * fNuState[i] + sij * fNuState[j];
772 fNuState[j] = cij * fNuState[j] - sij * fNuState[i];
773 }
774 else {
775 complexD eij = complexD(cos(fDelta[i][j]), -sin(fDelta[i][j]));
776 buffer = cij * fNuState[i] + sij * eij * fNuState[j];
777 fNuState[j] = cij * fNuState[j] - sij * conj(eij) * fNuState[i];
778 }
779
780 fNuState[i] = buffer;
781}

References OscProb::PMNS_Base::fDelta, OscProb::PMNS_Base::fNuState, and OscProb::PMNS_Base::fTheta.

Referenced by OscProb::PMNS_Base::GetMassEigenstate().

◆ SetAngle()

void PMNS_Base::SetAngle ( int  i,
int  j,
double  th 
)
virtualinherited

Set the mixing angle theta_ij in radians.

Requires that i<j. Will notify you if input is wrong. If i>j, will assume reverse order and swap i and j.

This will check if value is changing to keep track of whether the hamiltonian needs to be rebuilt.

Parameters
i,j- the indices of theta_ij
th- the value of theta_ij

Definition at line 539 of file PMNS_Base.cxx.

540{
541 if (i > j) {
542 cerr << "WARNING: First argument should be smaller than second argument"
543 << endl
544 << " Setting reverse order (Theta" << j << i << "). " << endl;
545 int temp = i;
546 i = j;
547 j = temp;
548 }
549 if (i < 1 || i > fNumNus - 1 || j < 2 || j > fNumNus) {
550 cerr << "ERROR: Theta" << i << j << " not valid for " << fNumNus
551 << " neutrinos. Doing nothing." << endl;
552 return;
553 }
554
555 // Check if value is actually changing
556 fBuiltHms *= (fTheta[i - 1][j - 1] == th);
557
558 fTheta[i - 1][j - 1] = th;
559}

References OscProb::PMNS_Base::fBuiltHms, OscProb::PMNS_Base::fNumNus, and OscProb::PMNS_Base::fTheta.

Referenced by GetSterile(), OscProb::PMNS_Decay::SetMix(), OscProb::PMNS_Fast::SetMix(), SetNominalPars(), and OscProb::PMNS_Base::SetStdPars().

◆ SetAtt() [1/2]

void PMNS_Base::SetAtt ( double  att,
int  idx 
)
protectedvirtualinherited

Set some single path attribute.

An auxiliary function to set individual attributes in a single path.

If the path sequence is not a single path, a new single path will be created and the previous sequence will be lost. Use with care.

Parameters
att- The value of the attribute
idx- The index of the attribute (0,1,2,3) = (L, Rho, Z/A, Layer)

Definition at line 364 of file PMNS_Base.cxx.

365{
366 if (fNuPaths.size() != 1) {
367 cerr << "WARNING: Clearing path vector and starting new single path."
368 << endl
369 << "To avoid possible issues, use the SetPath function." << endl;
370
371 SetStdPath();
372 }
373
374 switch (idx) {
375 case 0: fNuPaths[0].length = att; break;
376 case 1: fNuPaths[0].density = att; break;
377 case 2: fNuPaths[0].zoa = att; break;
378 case 3: fNuPaths[0].layer = att; break;
379 }
380}
virtual void SetStdPath()
Set standard neutrino path.
Definition: PMNS_Base.cxx:205

References OscProb::PMNS_Base::fNuPaths, and OscProb::PMNS_Base::SetStdPath().

Referenced by OscProb::PMNS_Base::SetDensity(), OscProb::PMNS_Base::SetLayers(), OscProb::PMNS_Base::SetLength(), and OscProb::PMNS_Base::SetZoA().

◆ SetAtt() [2/2]

void PMNS_Base::SetAtt ( vectorD  att,
int  idx 
)
protectedvirtualinherited

Set all values of a path attribute.

An auxiliary function to set individual attributes in a path sequence.

If the path sequence is of a different size, a new path sequence will be created and the previous sequence will be lost. Use with care.

Parameters
att- The values of the attribute
idx- The index of the attribute (0,1,2,3) = (L, Rho, Z/A, Layer)

Definition at line 427 of file PMNS_Base.cxx.

428{
429 // Get the sizes of the attribute and
430 // path sequence vectors
431 int nA = att.size();
432 int nP = fNuPaths.size();
433
434 // If the vector sizes are equal, update this attribute
435 if (nA == nP) {
436 for (int i = 0; i < nP; i++) {
437 switch (idx) {
438 case 0: fNuPaths[i].length = att[i]; break;
439 case 1: fNuPaths[i].density = att[i]; break;
440 case 2: fNuPaths[i].zoa = att[i]; break;
441 case 3: fNuPaths[i].layer = att[i]; break;
442 }
443 }
444 }
445 // If the vector sizes differ, create a new path sequence
446 // and set value for this attribute. Other attributes will
447 // be taken from default single path.
448 else {
449 cerr << "WARNING: New vector size. Starting new path vector." << endl
450 << "To avoid possible issues, use the SetPath function." << endl;
451
452 // Start a new standard path just
453 // to set default values
454 SetStdPath();
455
456 // Create a path segment with default values
457 NuPath p = fNuPaths[0];
458
459 // Clear the path sequence
460 ClearPath();
461
462 // Set this particular attribute's value
463 // and add the path segment to the sequence
464 for (int i = 0; i < nA; i++) {
465 switch (idx) {
466 case 0: p.length = att[i]; break;
467 case 1: p.density = att[i]; break;
468 case 2: p.zoa = att[i]; break;
469 case 3: p.layer = att[i]; break;
470 }
471
472 AddPath(p);
473 }
474 }
475}
virtual void ClearPath()
Clear the path vector.
Definition: PMNS_Base.cxx:287
int layer
An index to identify the matter type.
Definition: NuPath.h:81
double density
The density of the path segment in g/cm^3.
Definition: NuPath.h:79
double zoa
The effective Z/A value of the path segment.
Definition: NuPath.h:80

References OscProb::PMNS_Base::AddPath(), OscProb::PMNS_Base::ClearPath(), OscProb::NuPath::density, OscProb::PMNS_Base::fNuPaths, OscProb::NuPath::layer, OscProb::NuPath::length, OscProb::PMNS_Base::SetStdPath(), and OscProb::NuPath::zoa.

◆ SetAvgProbPrec()

void PMNS_Base::SetAvgProbPrec ( double  prec)
virtualinherited

Set the precision for the AvgProb method

Parameters
prec- AvgProb precision

Definition at line 1962 of file PMNS_Base.cxx.

1963{
1964 if (prec < 1e-8) {
1965 cerr << "WARNING: Cannot set AvgProb precision lower that 1e-8."
1966 << "Setting to 1e-8." << endl;
1967 prec = 1e-8;
1968 }
1969 fAvgProbPrec = prec;
1970}

References OscProb::PMNS_Base::fAvgProbPrec.

Referenced by PMNS_Avg(), and OscProb::PMNS_Base::PMNS_Base().

◆ SetCosT()

void PMNS_Avg::SetCosT ( double  cosT)
protectedvirtual

Set neutrino angle.

Parameters
cosT- The cosine of the neutrino angle

Definition at line 97 of file PMNS_Avg.cxx.

97{ fcosT = cosT; }

References fcosT.

Referenced by AvgAlgo(), AvgAlgoCosT(), and ExtrapolationProbCosT().

◆ SetCurPath()

void PMNS_Base::SetCurPath ( NuPath  p)
protectedvirtualinherited

Set the path currentlyin use by the class.

This will be used to know what path to propagate through next.

It will also check if values are changing to keep track of whether the eigensystem needs to be recomputed.

Parameters
p- A neutrino path segment

Definition at line 274 of file PMNS_Base.cxx.

275{
276 // Check if relevant value are actually changing
277 fGotES *= (fPath.density == p.density);
278 fGotES *= (fPath.zoa == p.zoa);
279
280 fPath = p;
281}

References OscProb::NuPath::density, OscProb::PMNS_Base::fGotES, OscProb::PMNS_Base::fPath, and OscProb::NuPath::zoa.

Referenced by OscProb::PMNS_Base::AvgProbLoE(), OscProb::PMNS_Base::AvgProbMatrixLoE(), OscProb::PMNS_Base::AvgProbVectorLoE(), OscProb::PMNS_OQS::BuildHVMB(), OscProb::PMNS_Base::ConvertEtoLoE(), ExtrapolationProbLoE(), OscProb::PMNS_Base::PropagatePath(), OscProb::PMNS_Decay::PropagatePath(), OscProb::PMNS_Deco::PropagatePath(), and PropagatePathTaylor().

◆ SetDelta()

void PMNS_Base::SetDelta ( int  i,
int  j,
double  delta 
)
virtualinherited

Set the CP phase delta_ij in radians.

Requires that i+1<j. Will notify you if input is wrong. If i>j, will assume reverse order and swap i and j.

This will check if value is changing to keep track of whether the hamiltonian needs to be rebuilt.

Parameters
i,j- the indices of delta_ij
delta- the value of delta_ij

Definition at line 602 of file PMNS_Base.cxx.

603{
604 if (i > j) {
605 cerr << "WARNING: First argument should be smaller than second argument"
606 << endl
607 << " Setting reverse order (Delta" << j << i << "). " << endl;
608 int temp = i;
609 i = j;
610 j = temp;
611 }
612 if (i < 1 || i > fNumNus - 1 || j < 2 || j > fNumNus) {
613 cerr << "ERROR: Delta" << i << j << " not valid for " << fNumNus
614 << " neutrinos. Doing nothing." << endl;
615 return;
616 }
617 if (i + 1 == j) {
618 cerr << "WARNING: Rotation " << i << j << " is real. Doing nothing."
619 << endl;
620 return;
621 }
622
623 // Check if value is actually changing
624 fBuiltHms *= (fDelta[i - 1][j - 1] == delta);
625
626 fDelta[i - 1][j - 1] = delta;
627}

References OscProb::PMNS_Base::fBuiltHms, OscProb::PMNS_Base::fDelta, and OscProb::PMNS_Base::fNumNus.

Referenced by OscProb::PMNS_Decay::SetMix(), OscProb::PMNS_Fast::SetMix(), and SetNominalPars().

◆ SetDeltaMsqrs()

void PMNS_Fast::SetDeltaMsqrs ( double  dm21,
double  dm32 
)
virtualinherited

Set both mass-splittings at once.

These are Dm_21 and Dm_32 in eV^2.
The corresponding Dm_31 is set in the class attributes.

Parameters
dm21- The solar mass-splitting Dm_21
dm32- The atmospheric mass-splitting Dm_32

Definition at line 55 of file PMNS_Fast.cxx.

56{
57 SetDm(2, dm21);
58 SetDm(3, dm32 + dm21);
59}
virtual void SetDm(int j, double dm)
Set the mass-splitting dm_j1 in eV^2.
Definition: PMNS_Base.cxx:674

References OscProb::PMNS_Base::SetDm().

◆ SetDensity() [1/2]

void PMNS_Base::SetDensity ( double  rho)
virtualinherited

Set single path density.

If the path sequence is not a single path, a new single path will be created and the previous sequence will be lost. Use with care.

Parameters
rho- The density of the path segment in g/cm^3

Definition at line 402 of file PMNS_Base.cxx.

402{ SetAtt(rho, 1); }
virtual void SetAtt(double att, int idx)
Set one of the path attributes.
Definition: PMNS_Base.cxx:364

References OscProb::PMNS_Base::SetAtt().

◆ SetDensity() [2/2]

void PMNS_Base::SetDensity ( vectorD  rho)
virtualinherited

Set multiple path densities.

If the path sequence is of a different size, a new path sequence will be created and the previous sequence will be lost. Use with care.

Parameters
rho- The densities of the path segments in g/cm^3

Definition at line 497 of file PMNS_Base.cxx.

497{ SetAtt(rho, 1); }

References OscProb::PMNS_Base::SetAtt().

◆ SetDm()

void PMNS_Base::SetDm ( int  j,
double  dm 
)
virtualinherited

Set the mass-splitting dm_j1 = (m_j^2 - m_1^2) in eV^2

Requires that j>1. Will notify you if input is wrong.

This will check if value is changing to keep track of whether the hamiltonian needs to be rebuilt.

Parameters
j- the index of dm_j1
dm- the value of dm_j1

Definition at line 674 of file PMNS_Base.cxx.

675{
676 if (j < 2 || j > fNumNus) {
677 cerr << "ERROR: Dm" << j << "1 not valid for " << fNumNus
678 << " neutrinos. Doing nothing." << endl;
679 return;
680 }
681
682 // Check if value is actually changing
683 fBuiltHms *= (fDm[j - 1] == dm);
684
685 fDm[j - 1] = dm;
686}

References OscProb::PMNS_Base::fBuiltHms, OscProb::PMNS_Base::fDm, and OscProb::PMNS_Base::fNumNus.

Referenced by GetSterile(), OscProb::PMNS_Decay::SetDeltaMsqrs(), OscProb::PMNS_Fast::SetDeltaMsqrs(), SetNominalPars(), and OscProb::PMNS_Base::SetStdPars().

◆ SetEnergy()

void PMNS_Base::SetEnergy ( double  E)
virtualinherited

Set neutrino energy in GeV.

This will check if value is changing to keep track of whether the eigensystem needs to be recomputed.

Parameters
E- The neutrino energy in GeV

Definition at line 226 of file PMNS_Base.cxx.

227{
228 // Check if value is actually changing
229 fGotES *= (fEnergy == E);
230
231 fEnergy = E;
232}

References OscProb::PMNS_Base::fEnergy, and OscProb::PMNS_Base::fGotES.

Referenced by AvgAlgo(), AvgAlgoCosT(), OscProb::PMNS_Base::AvgProbLoE(), OscProb::PMNS_Base::AvgProbMatrixLoE(), OscProb::PMNS_Base::AvgProbVectorLoE(), ExtrapolationProb(), ExtrapolationProbLoE(), OscProb::PMNS_Base::PMNS_Base(), OscProb::PMNS_Base::Prob(), OscProb::PMNS_Base::ProbMatrix(), and OscProb::PMNS_Base::ProbVector().

◆ SetIsNuBar()

void PMNS_Base::SetIsNuBar ( bool  isNuBar)
virtualinherited

Set anti-neutrino flag.

This will check if value is changing to keep track of whether the eigensystem needs to be recomputed.

Parameters
isNuBar- Set to true for anti-neutrino and false for neutrino.

Reimplemented in OscProb::PMNS_Decay, OscProb::PMNS_Iter, and OscProb::PMNS_OQS.

Definition at line 243 of file PMNS_Base.cxx.

244{
245 // Check if value is actually changing
246 fGotES *= (fIsNuBar == isNuBar);
247
248 fIsNuBar = isNuBar;
249}

References OscProb::PMNS_Base::fGotES, and OscProb::PMNS_Base::fIsNuBar.

Referenced by CheckProb(), OscProb::PMNS_Base::PMNS_Base(), SaveTestFile(), and OscProb::PMNS_OQS::SetIsNuBar().

◆ SetLayers()

void PMNS_Base::SetLayers ( std::vector< int >  lay)
virtualinherited

Set multiple path layer indices.

If the path sequence is of a different size, a new path sequence will be created and the previous sequence will be lost. Use with care.

Parameters
lay- Indices to identify the layer types (e.g. earth inner core)

Definition at line 519 of file PMNS_Base.cxx.

520{
521 vectorD lay_double(lay.begin(), lay.end());
522
523 SetAtt(lay_double, 3);
524}

References OscProb::PMNS_Base::SetAtt().

◆ SetLength() [1/2]

void PMNS_Base::SetLength ( double  L)
virtualinherited

Set the length for a single path.

If the path sequence is not a single path, a new single path will be created and the previous sequence will be lost. Use with care.

Parameters
L- The length of the path segment in km

Definition at line 391 of file PMNS_Base.cxx.

391{ SetAtt(L, 0); }

References OscProb::PMNS_Base::SetAtt().

Referenced by OscProb::PMNS_Base::Prob(), OscProb::PMNS_Base::ProbMatrix(), and OscProb::PMNS_Base::ProbVector().

◆ SetLength() [2/2]

void PMNS_Base::SetLength ( vectorD  L)
virtualinherited

Set multiple path lengths.

If the path sequence is of a different size, a new path sequence will be created and the previous sequence will be lost. Use with care.

Parameters
L- The lengths of the path segments in km

Definition at line 486 of file PMNS_Base.cxx.

486{ SetAtt(L, 0); }

References OscProb::PMNS_Base::SetAtt().

◆ SetMaxCache()

void PMNS_Base::SetMaxCache ( int  mc = 1e6)
virtualinherited

Set maximum number of cached eigensystems. Finding eigensystems can become slow and take up memory. This protects the cache from becoming too large.

Parameters
mc- Max cache size (default: 1e6)

Definition at line 128 of file PMNS_Base.cxx.

128{ fMaxCache = mc; }

References OscProb::PMNS_Base::fMaxCache.

◆ SetMix()

void PMNS_Fast::SetMix ( double  th12,
double  th23,
double  th13,
double  deltacp 
)
virtualinherited

Set all mixing parameters at once.

Parameters
th12- The value of the mixing angle theta_12
th23- The value of the mixing angle theta_23
th13- The value of the mixing angle theta_13
deltacp- The value of the CP phase delta_13

Definition at line 37 of file PMNS_Fast.cxx.

38{
39 SetAngle(1, 2, th12);
40 SetAngle(1, 3, th13);
41 SetAngle(2, 3, th23);
42 SetDelta(1, 3, deltacp);
43}
virtual void SetDelta(int i, int j, double delta)
Set the CP phase delta_ij.
Definition: PMNS_Base.cxx:602
virtual void SetAngle(int i, int j, double th)
Set the mixing angle theta_ij.
Definition: PMNS_Base.cxx:539

References OscProb::PMNS_Base::SetAngle(), and OscProb::PMNS_Base::SetDelta().

◆ SetPath() [1/3]

void PMNS_Base::SetPath ( double  length,
double  density,
double  zoa = 0.5,
int  layer = 0 
)
virtualinherited

Set a single path defining attributes directly.

This destroys the current path sequence and creates a new first path.

Parameters
length- The length of the path segment in km
density- The density of the path segment in g/cm^3
zoa- The effective Z/A of the path segment
layer- An index to identify the layer type (e.g. earth inner core)

Definition at line 347 of file PMNS_Base.cxx.

348{
349 SetPath(NuPath(length, density, zoa, layer));
350}

References OscProb::PMNS_Base::SetPath().

◆ SetPath() [2/3]

void PMNS_Base::SetPath ( NuPath  p)
virtualinherited

Set a single path.

This destroys the current path sequence and creates a new first path.

Parameters
p- A neutrino path segment

Definition at line 330 of file PMNS_Base.cxx.

331{
332 ClearPath();
333 AddPath(p);
334}

References OscProb::PMNS_Base::AddPath(), and OscProb::PMNS_Base::ClearPath().

Referenced by AvgAlgo(), AvgAlgoCosT(), ExtrapolationProbCosT(), OscProb::PMNS_Base::SetPath(), OscProb::PMNS_Base::SetStdPath(), and SetTestPath().

◆ SetPath() [3/3]

void PMNS_Base::SetPath ( std::vector< NuPath paths)
virtualinherited

Set vector of neutrino paths.

Parameters
paths- A sequence of neutrino paths

Definition at line 294 of file PMNS_Base.cxx.

294{ fNuPaths = paths; }

References OscProb::PMNS_Base::fNuPaths.

◆ SetPremModel()

void PMNS_Avg::SetPremModel ( OscProb::PremModel prem)
virtual

Copy the earth model used

This is done to get access to the PremLayer list to be used in the LnDerivative() function.

Parameters
prem- The earth model used

Definition at line 89 of file PMNS_Avg.cxx.

89{ fPrem = prem; }

References fPrem.

◆ SetPureState()

void PMNS_Base::SetPureState ( vectorC  nu_in)
protectedvirtualinherited

Set the initial state from a pure state

Parameters
nu_in- The neutrino initial state in flavour basis.

Reimplemented in OscProb::PMNS_DensityMatrix.

Definition at line 1070 of file PMNS_Base.cxx.

1071{
1072 assert(nu_in.size() == fNumNus);
1073
1074 fNuState = nu_in;
1075}

References OscProb::PMNS_Base::fNumNus, and OscProb::PMNS_Base::fNuState.

Referenced by OscProb::PMNS_Base::Prob(), and OscProb::PMNS_Base::ProbVector().

◆ SetStdPars()

void PMNS_Base::SetStdPars ( )
virtualinherited

Set standard oscillation parameters from PDG 2015.

For two neutrinos, Dm is set to the muon disappearance effective mass-splitting and mixing angle.

Definition at line 177 of file PMNS_Base.cxx.

178{
179 if (fNumNus > 2) {
180 // PDG values for 3 neutrinos
181 // Also applicable for 3+N neutrinos
182 SetAngle(1, 2, asin(sqrt(0.304)));
183 SetAngle(1, 3, asin(sqrt(0.0219)));
184 SetAngle(2, 3, asin(sqrt(0.514)));
185 SetDm(2, 7.53e-5);
186 SetDm(3, 2.52e-3);
187 }
188 else if (fNumNus == 2) {
189 // Effective muon disappearance values
190 // for two-flavour approximation
191 SetAngle(1, 2, 0.788);
192 SetDm(2, 2.47e-3);
193 }
194}

References OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::SetAngle(), and OscProb::PMNS_Base::SetDm().

Referenced by OscProb::PMNS_Base::PMNS_Base().

◆ SetStdPath()

void PMNS_Base::SetStdPath ( )
virtualinherited

Set standard single path.

Length is 1000 km, so ~2 GeV peak energy.

Density is approximate from CRUST2.0 (~2.8 g/cm^3). Z/A is set to a round 0.5.

Definition at line 205 of file PMNS_Base.cxx.

206{
207 NuPath p;
208
209 p.length = 1000; // 1000 km default
210 p.density = 2.8; // Crust density
211 p.zoa = 0.5; // Crust Z/A
212 p.layer = 0; // Single layer
213
214 SetPath(p);
215}

References OscProb::NuPath::density, OscProb::NuPath::layer, OscProb::NuPath::length, OscProb::PMNS_Base::SetPath(), and OscProb::NuPath::zoa.

Referenced by OscProb::PMNS_Base::PMNS_Base(), OscProb::PMNS_LIV::PMNS_LIV(), OscProb::PMNS_NSI::PMNS_NSI(), OscProb::PMNS_NUNM::PMNS_NUNM(), and OscProb::PMNS_Base::SetAtt().

◆ SetUseCache()

void PMNS_Base::SetUseCache ( bool  u = true)
virtualinherited

Turn on/off caching of eigensystems. This can save a lot of CPU time by avoiding recomputing eigensystems if we've already seen them recently. Especially useful when running over multiple earth layers and even more if multiple baselines will be computed, e.g. for atmospheric neutrinos.

Parameters
u- flag to set caching on (default: true)

Definition at line 105 of file PMNS_Base.cxx.

105{ fUseCache = u; }

References OscProb::PMNS_Base::fUseCache.

Referenced by OscProb::PMNS_Base::PMNS_Base().

◆ SetVacuumEigensystem()

void PMNS_Fast::SetVacuumEigensystem ( )
protectedvirtualinherited

Set the eigensystem to the analytic solution in vacuum.

We know the vacuum eigensystem, so just write it explicitly

Definition at line 154 of file PMNS_Fast.cxx.

155{
156 double s12, s23, s13, c12, c23, c13;
157 complexD idelta(0.0, fDelta[0][2]);
158 if (fIsNuBar) idelta = conj(idelta);
159
160 s12 = sin(fTheta[0][1]);
161 s23 = sin(fTheta[1][2]);
162 s13 = sin(fTheta[0][2]);
163 c12 = cos(fTheta[0][1]);
164 c23 = cos(fTheta[1][2]);
165 c13 = cos(fTheta[0][2]);
166
167 fEvec[0][0] = c12 * c13;
168 fEvec[0][1] = s12 * c13;
169 fEvec[0][2] = s13 * exp(-idelta);
170
171 fEvec[1][0] = -s12 * c23 - c12 * s23 * s13 * exp(idelta);
172 fEvec[1][1] = c12 * c23 - s12 * s23 * s13 * exp(idelta);
173 fEvec[1][2] = s23 * c13;
174
175 fEvec[2][0] = s12 * s23 - c12 * c23 * s13 * exp(idelta);
176 fEvec[2][1] = -c12 * s23 - s12 * c23 * s13 * exp(idelta);
177 fEvec[2][2] = c23 * c13;
178
179 fEval[0] = 0;
180 fEval[1] = fDm[1] / (2 * kGeV2eV * fEnergy);
181 fEval[2] = fDm[2] / (2 * kGeV2eV * fEnergy);
182}

References OscProb::PMNS_Base::fDelta, OscProb::PMNS_Base::fDm, OscProb::PMNS_Base::fEnergy, OscProb::PMNS_Base::fEval, OscProb::PMNS_Base::fEvec, OscProb::PMNS_Base::fIsNuBar, OscProb::PMNS_Base::fTheta, and OscProb::PMNS_Base::kGeV2eV.

Referenced by OscProb::PMNS_OQS::BuildHms(), OscProb::PMNS_Fast::SolveHam(), and OscProb::PMNS_Iter::SolveHam().

◆ SetwidthBin()

void PMNS_Avg::SetwidthBin ( double  dE,
double  dcosT 
)
protectedvirtual

Set bin's widths for energy and angle

Set bin's widths.

Parameters
dE- The width of the bin for energy in GeV
dcosT- The width of the bin for angle

Definition at line 106 of file PMNS_Avg.cxx.

107{
108 fdInvE = dE;
109 fdcosT = dcosT;
110}

References fdcosT, and fdInvE.

Referenced by AvgAlgo(), AvgAlgoCosT(), ExtrapolationProb(), ExtrapolationProbCosT(), ExtrapolationProbLoE(), and PMNS_Avg().

◆ SetZoA() [1/2]

void PMNS_Base::SetZoA ( double  zoa)
virtualinherited

Set single path Z/A.

If the path sequence is not a single path, a new single path will be created and the previous sequence will be lost. Use with care.

Parameters
zoa- The effective Z/A of the path segment

Definition at line 413 of file PMNS_Base.cxx.

413{ SetAtt(zoa, 2); }

References OscProb::PMNS_Base::SetAtt().

◆ SetZoA() [2/2]

void PMNS_Base::SetZoA ( vectorD  zoa)
virtualinherited

Set multiple path Z/A values.

If the path sequence is of a different size, a new path sequence will be created and the previous sequence will be lost. Use with care.

Parameters
zoa- The effective Z/A of the path segments

Definition at line 508 of file PMNS_Base.cxx.

508{ SetAtt(zoa, 2); }

References OscProb::PMNS_Base::SetAtt().

◆ SolveHam()

void PMNS_Fast::SolveHam ( )
protectedvirtualinherited

Solve the full Hamiltonian for eigenvectors and eigenvalues.

If vacuum, just use the PMNS matrix, otherwise solve in Matter using GLoBES.

Implements OscProb::PMNS_Base.

Reimplemented in OscProb::PMNS_Iter, and OscProb::PMNS_LIV.

Definition at line 98 of file PMNS_Fast.cxx.

99{
100 // Do vacuum oscillation in low density
101 if (fPath.density < 1.0e-6) {
103 return;
104 }
105
107}
virtual void SolveHamMatter()
Solve the full Hamiltonian in matter.
Definition: PMNS_Fast.cxx:117
virtual void SetVacuumEigensystem()
Set the eigensystem to the analytic solution of the vacuum Hamiltonian.
Definition: PMNS_Fast.cxx:154

References OscProb::NuPath::density, OscProb::PMNS_Base::fPath, OscProb::PMNS_Fast::SetVacuumEigensystem(), and OscProb::PMNS_Fast::SolveHamMatter().

Referenced by OscProb::PMNS_Deco::PropagatePath(), OscProb::PMNS_OQS::PropagatePath(), and PropagatePathTaylor().

◆ SolveHamMatter()

void PMNS_Fast::SolveHamMatter ( )
protectedvirtualinherited

Solve the full Hamiltonian for eigenvectors and eigenvalues.

This is using a method from the GLoBES software available at http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/
We should cite them accordingly

Definition at line 117 of file PMNS_Fast.cxx.

118{
119 // Build Hamiltonian
120 BuildHms();
121
122 // Check if anything changed
123 if (fGotES) return;
124
125 // Try caching if activated
126 if (TryCache()) return;
127
128 UpdateHam();
129
130 double fEvalGLoBES[3];
131 complexD fEvecGLoBES[3][3];
132
133 // Solve Hamiltonian for eigensystem using the GLoBES method
134 zheevh3(fHam, fEvecGLoBES, fEvalGLoBES);
135
136 // Fill fEval and fEvec vectors from GLoBES arrays
137 for (int i = 0; i < fNumNus; i++) {
138 fEval[i] = fEvalGLoBES[i];
139 for (int j = 0; j < fNumNus; j++) { fEvec[i][j] = fEvecGLoBES[i][j]; }
140 }
141
142 fGotES = true;
143
144 // Fill cache if activated
145 FillCache();
146}
virtual void FillCache()
Cache the current eigensystem.
Definition: PMNS_Base.cxx:157
virtual bool TryCache()
Try to find a cached eigensystem.
Definition: PMNS_Base.cxx:134
virtual void BuildHms()
Build the matrix of masses squared.
Definition: PMNS_Base.cxx:955
int zheevh3(std::complex< double > A[3][3], std::complex< double > Q[3][3], double w[3])
Definition: zheevh3.cxx:31

References OscProb::PMNS_Base::BuildHms(), OscProb::PMNS_Base::fEval, OscProb::PMNS_Base::fEvec, OscProb::PMNS_Base::fGotES, OscProb::PMNS_Fast::fHam, OscProb::PMNS_Base::FillCache(), OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::TryCache(), OscProb::PMNS_Fast::UpdateHam(), and zheevh3().

Referenced by OscProb::PMNS_Fast::SolveHam(), and OscProb::PMNS_LIV::SolveHam().

◆ SolveK()

void PMNS_Avg::SolveK ( complexD  K[3][3],
vectorD lambda,
matrixC V 
)
protectedvirtual

Solve the K matrix for eigenvectors and eigenvalues

Solve one K matrix for eigenvectors and eigenvalues.

This is using a method from the GLoBES software available at http://www.mpi-hd.mpg.de/personalhomes/globes/3x3/
We should cite them accordingly

Parameters
K- The K matrix
lambda- The eigenvalues of K
V- The eigenvectors of K

Definition at line 408 of file PMNS_Avg.cxx.

409{
410 double fEvalGLoBES[3];
411 complexD fEvecGLoBES[3][3];
412
413 // Solve K for eigensystem using the GLoBES method
414 zheevh3(K, fEvecGLoBES, fEvalGLoBES);
415
416 // Fill flambdaInvE and fVInvE vectors from GLoBES arrays
417 for (int i = 0; i < fNumNus; i++) {
418 lambda[i] = fEvalGLoBES[i];
419 for (int j = 0; j < fNumNus; j++) { V[i][j] = fEvecGLoBES[i][j]; }
420 }
421}

References OscProb::PMNS_Base::fNumNus, and zheevh3().

Referenced by AvgAlgo(), AvgAlgoCosT(), ExtrapolationProb(), ExtrapolationProbCosT(), and ExtrapolationProbLoE().

◆ TryCache()

bool PMNS_Base::TryCache ( )
protectedvirtualinherited

Try to find a cached version of this eigensystem.

Definition at line 134 of file PMNS_Base.cxx.

135{
136 if (fUseCache && !fMixCache.empty()) {
138
139 unordered_set<EigenPoint>::iterator it = fMixCache.find(fProbe);
140
141 if (it != fMixCache.end()) {
142 for (int i = 0; i < fNumNus; i++) {
143 fEval[i] = (*it).fEval[i] * (*it).fEnergy / fEnergy;
144 for (int j = 0; j < fNumNus; j++) { fEvec[i][j] = (*it).fEvec[i][j]; }
145 }
146 return true;
147 }
148 }
149
150 return false;
151}

References OscProb::PMNS_Base::fEnergy, OscProb::PMNS_Base::fEval, OscProb::PMNS_Base::fEvec, OscProb::PMNS_Base::fIsNuBar, OscProb::PMNS_Base::fMixCache, OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::fPath, OscProb::PMNS_Base::fProbe, OscProb::PMNS_Base::fUseCache, and OscProb::EigenPoint::SetVars().

Referenced by OscProb::PMNS_Sterile::SolveHam(), and OscProb::PMNS_Fast::SolveHamMatter().

◆ UpdateHam()

void PMNS_Fast::UpdateHam ( )
protectedvirtualinherited

Build the full Hamiltonian in matter.

Here we divide the mass squared matrix Hms by the 2E to obtain the vacuum Hamiltonian in eV. Then, the matter potential is added to the electron component.

Reimplemented in OscProb::PMNS_LIV, OscProb::PMNS_NSI, OscProb::PMNS_NUNM, and OscProb::PMNS_SNSI.

Definition at line 69 of file PMNS_Fast.cxx.

70{
71 double lv = 2 * kGeV2eV * fEnergy; // 2E in eV
72
73 double kr2GNe = kK2 * M_SQRT2 * kGf;
74 kr2GNe *= fPath.density * fPath.zoa; // Matter potential in eV
75
76 // Finish building Hamiltonian in matter with dimension of eV
77 for (int i = 0; i < fNumNus; i++) {
78 fHam[i][i] = fHms[i][i] / lv;
79 for (int j = i + 1; j < fNumNus; j++) {
80 if (!fIsNuBar)
81 fHam[i][j] = fHms[i][j] / lv;
82 else
83 fHam[i][j] = conj(fHms[i][j]) / lv;
84 }
85 }
86 if (!fIsNuBar)
87 fHam[0][0] += kr2GNe;
88 else
89 fHam[0][0] -= kr2GNe;
90}
static const double kK2
mol/GeV^2/cm^3 to eV
Definition: PMNS_Base.h:216
static const double kGf
G_F in units of GeV^-2.
Definition: PMNS_Base.h:220

References OscProb::NuPath::density, OscProb::PMNS_Base::fEnergy, OscProb::PMNS_Fast::fHam, OscProb::PMNS_Base::fHms, OscProb::PMNS_Base::fIsNuBar, OscProb::PMNS_Base::fNumNus, OscProb::PMNS_Base::fPath, OscProb::PMNS_Base::kGeV2eV, OscProb::PMNS_Base::kGf, OscProb::PMNS_Base::kK2, and OscProb::NuPath::zoa.

Referenced by BuildKcosT(), and OscProb::PMNS_Fast::SolveHamMatter().

Member Data Documentation

◆ fAvgProbPrec

double OscProb::PMNS_Base::fAvgProbPrec
protectedinherited

◆ fBuffer

vectorC OscProb::PMNS_Base::fBuffer
protectedinherited

◆ fBuiltHms

◆ fCachePrec

double OscProb::PMNS_Base::fCachePrec
protectedinherited

Definition at line 302 of file PMNS_Base.h.

◆ fcosT

double OscProb::PMNS_Avg::fcosT
protected

Definition at line 187 of file PMNS_Avg.h.

Referenced by LnDerivative(), and SetCosT().

◆ fdcosT

double OscProb::PMNS_Avg::fdcosT
protected

◆ fDelta

◆ fdensityMatrix

matrixC OscProb::PMNS_Avg::fdensityMatrix
protected

◆ fDetRadius

double OscProb::PMNS_Avg::fDetRadius
protected

◆ fdInvE

double OscProb::PMNS_Avg::fdInvE
protected

◆ fdl

int OscProb::PMNS_Avg::fdl
protected

Definition at line 199 of file PMNS_Avg.h.

Referenced by InitializeTaylorsVectors(), and LnDerivative().

◆ fDm

◆ fEnergy

◆ fEval

◆ fEvec

◆ fevolutionMatrixS

matrixC OscProb::PMNS_Avg::fevolutionMatrixS
protected

Evolution matrix S for reference energy and angle for the entire path

Definition at line 173 of file PMNS_Avg.h.

Referenced by AlgorithmDensityMatrix(), AvgFormula(), AvgFormulaExtrapolation(), InitializeTaylorsVectors(), MultiplicationRuleK(), and MultiplicationRuleS().

◆ fGotES

◆ fHam

◆ fHms

◆ fIsNuBar

◆ fKcosT

complexD OscProb::PMNS_Avg::fKcosT[3][3]
protected

◆ fKflavor

matrixC OscProb::PMNS_Avg::fKflavor
protected

Definition at line 178 of file PMNS_Avg.h.

Referenced by BuildKcosT(), InitializeTaylorsVectors(), MultiplicationRuleK(), and rotateK().

◆ fKInvE

complexD OscProb::PMNS_Avg::fKInvE[3][3]
protected

K matrix for the inverse of energy in GeV for the entire path

Definition at line 182 of file PMNS_Avg.h.

Referenced by AvgAlgo(), ExtrapolationProb(), ExtrapolationProbLoE(), InitializeTaylorsVectors(), and PropagatePathTaylor().

◆ fKmass

matrixC OscProb::PMNS_Avg::fKmass
protected

Definition at line 177 of file PMNS_Avg.h.

Referenced by BuildKE(), InitializeTaylorsVectors(), and rotateK().

◆ flambdaCosT

vectorD OscProb::PMNS_Avg::flambdaCosT
protected

◆ flambdaInvE

vectorD OscProb::PMNS_Avg::flambdaInvE
protected

◆ fLayer

int OscProb::PMNS_Avg::fLayer
protected

Definition at line 198 of file PMNS_Avg.h.

Referenced by InitializeTaylorsVectors(), and LnDerivative().

◆ fMaxCache

int OscProb::PMNS_Base::fMaxCache
protectedinherited

Definition at line 303 of file PMNS_Base.h.

Referenced by OscProb::PMNS_Base::FillCache(), and OscProb::PMNS_Base::SetMaxCache().

◆ fminRsq

double OscProb::PMNS_Avg::fminRsq
protected

Definition at line 201 of file PMNS_Avg.h.

Referenced by AvgAlgo(), AvgAlgoCosT(), ExtrapolationProbCosT(), and LnDerivative().

◆ fMixCache

std::unordered_set<EigenPoint> OscProb::PMNS_Base::fMixCache
protectedinherited

◆ fNumNus

int OscProb::PMNS_Base::fNumNus
protectedinherited

Definition at line 277 of file PMNS_Base.h.

Referenced by OscProb::PMNS_NUNM::ApplyAlphaDagger(), AvgFormula(), AvgFormulaExtrapolation(), OscProb::PMNS_Base::AvgProbVector(), OscProb::PMNS_Base::AvgProbVectorLoE(), OscProb::PMNS_Base::BuildHms(), OscProb::PMNS_Decay::BuildHms(), OscProb::PMNS_SNSI::BuildHms(), BuildKcosT(), BuildKE(), OscProb::PMNS_Base::FillCache(), OscProb::PMNS_NUNM::GetAlpha(), OscProb::PMNS_Base::GetAngle(), OscProb::PMNS_LIV::GetaT(), OscProb::PMNS_LIV::GetcT(), OscProb::PMNS_Base::GetDelta(), OscProb::PMNS_Base::GetDm(), OscProb::PMNS_Base::GetDmEff(), OscProb::PMNS_NSI::GetEps(), OscProb::PMNS_Base::GetMassEigenstate(), OscProb::PMNS_Base::GetProbVector(), OscProb::PMNS_Base::GetSamplePoints(), HadamardProduct(), InitializeTaylorsVectors(), MultiplicationRuleK(), MultiplicationRuleS(), OscProb::PMNS_Base::P(), OscProb::PMNS_DensityMatrix::P(), OscProb::PMNS_Base::PMNS_Base(), OscProb::PMNS_Decay::PMNS_Decay(), OscProb::PMNS_Base::ProbMatrix(), OscProb::PMNS_NUNM::ProbMatrix(), OscProb::PMNS_OQS::ProbMatrix(), OscProb::PMNS_DensityMatrix::ProbMatrix(), OscProb::PMNS_Base::PropagatePath(), OscProb::PMNS_Decay::PropagatePath(), OscProb::PMNS_Deco::PropagatePath(), OscProb::PMNS_Iter::PropagatePath(), PropagatePathTaylor(), OscProb::PMNS_Base::ResetToFlavour(), OscProb::PMNS_DensityMatrix::ResetToFlavour(), RotateDensityM(), rotateK(), rotateS(), OscProb::PMNS_DensityMatrix::RotateState(), OscProb::PMNS_NUNM::SetAlpha(), OscProb::PMNS_Base::SetAngle(), OscProb::PMNS_LIV::SetaT(), OscProb::PMNS_LIV::SetcT(), OscProb::PMNS_Base::SetDelta(), OscProb::PMNS_Base::SetDm(), OscProb::PMNS_NSI::SetEps(), OscProb::PMNS_DensityMatrix::SetInitialRho(), OscProb::PMNS_Base::SetPureState(), OscProb::PMNS_DensityMatrix::SetPureState(), OscProb::PMNS_Base::SetStdPars(), OscProb::PMNS_Sterile::SolveEigenSystem(), OscProb::PMNS_Iter::SolveHam(), OscProb::PMNS_Sterile::SolveHam(), OscProb::PMNS_Fast::SolveHamMatter(), SolveK(), OscProb::PMNS_Base::TryCache(), OscProb::PMNS_Decay::UpdateHam(), OscProb::PMNS_Fast::UpdateHam(), OscProb::PMNS_LIV::UpdateHam(), OscProb::PMNS_NSI::UpdateHam(), OscProb::PMNS_NUNM::UpdateHam(), OscProb::PMNS_SNSI::UpdateHam(), and OscProb::PMNS_Sterile::UpdateHam().

◆ fNuPaths

◆ fNuState

◆ fPath

◆ fPhases

vectorC OscProb::PMNS_Base::fPhases
protectedinherited

Definition at line 286 of file PMNS_Base.h.

Referenced by OscProb::PMNS_Base::PropagatePath(), PropagatePathTaylor(), and rotateS().

◆ fPrem

OscProb::PremModel OscProb::PMNS_Avg::fPrem
protected

◆ fProbe

EigenPoint OscProb::PMNS_Base::fProbe
protectedinherited

Definition at line 308 of file PMNS_Base.h.

Referenced by OscProb::PMNS_Base::FillCache(), and OscProb::PMNS_Base::TryCache().

◆ fSflavor

matrixC OscProb::PMNS_Avg::fSflavor
protected

Definition at line 176 of file PMNS_Avg.h.

Referenced by InitializeTaylorsVectors(), MultiplicationRuleS(), and rotateS().

◆ fTheta

◆ fUseCache

bool OscProb::PMNS_Base::fUseCache
protectedinherited

◆ fVcosT

matrixC OscProb::PMNS_Avg::fVcosT
protected

◆ fVInvE

matrixC OscProb::PMNS_Avg::fVInvE
protected

◆ kGeV2eV

◆ kGf

◆ kK2

◆ kKm2eV

◆ kNA

const double PMNS_Base::kNA = 6.022140857e23
staticprotectedinherited

Definition at line 218 of file PMNS_Base.h.

◆ one

const complexD PMNS_Base::one
staticprotectedinherited

◆ zero


The documentation for this class was generated from the following files: